

Spring Data
Modern Data Access for Enterprise Java

Mark Pollack, Oliver Gierke, Thomas Risberg,
Jon Brisbin, and Michael Hunger

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Spring Data
by Mark Pollack, Oliver Gierke, Thomas Risberg, Jon Brisbin, and Michael Hunger

Copyright © 2013 Mark Pollack, Oliver Gierke, Thomas Risberg, Jonathan L. Brisbin, Michael Hunger.
All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Kristen Borg
Proofreader: Rachel Monaghan

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

October 2012: First Edition.

Revision History for the First Edition:
2012-10-11 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449323950 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Spring Data, the image of a giant squirrel, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32395-0

[LSI]

1349968177

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449323950

Thanks to my wife, Daniela, and sons, Gabriel
and Alexandre, whose patience with me stealing

time away for “the book” made it possible.

—Mark Pollack

I’d like to thank my family, friends, fellow musi-
cians, and everyone I’ve had the pleasure to work
with so far; the entire Spring Data and Spring-

Source team for this awesome journey; and last,
but actually first of all, Sabine, for her inexhaus-

tible love and support.

—Oliver Gierke

To my wife, Carol, and my son, Alex, thank you
for enriching my life and for all your support and

encouragement.

—Thomas Risberg

To my wife, Tisha; my sons, Jack, Ben, and Dan-
iel; and my daughters, Morgan and Hannah.

Thank you for your love, support, and patience.
All this wouldn’t be worth it without you.

—Jon Brisbin

My special thanks go to Rod and Emil for starting
the Spring Data project and to Oliver for making
it great. My family is always very supportive of
my crazy work; I’m very grateful to have such

understanding women around me.

—Michael Hunger

I’d like to thank my wife, Nanette, and my kids for
their support, patience, and understanding.

Thanks also to Rod and my colleagues on the
Spring Data team for making all of this possible.

—David Turanski

Table of Contents

Foreword . xiii

Preface . xv

Part I. Background

1. The Spring Data Project . 3
NoSQL Data Access for Spring Developers 3
General Themes 5
The Domain 6
The Sample Code 6

Importing the Source Code into Your IDE 7

2. Repositories: Convenient Data Access Layers . 13
Quick Start 13
Defining Query Methods 16

Query Lookup Strategies 16
Query Derivation 17
Pagination and Sorting 18

Defining Repositories 19
Fine-Tuning Repository Interfaces 20
Manually Implementing Repository Methods 21

IDE Integration 22
IntelliJ IDEA 24

3. Type-Safe Querying Using Querydsl . 27
Introduction to Querydsl 27
Generating the Query Metamodel 30

Build System Integration 30
Supported Annotation Processors 31

vii

Querying Stores Using Querydsl 32
Integration with Spring Data Repositories 32

Executing Predicates 33
Manually Implementing Repositories 34

Part II. Relational Databases

4. JPA Repositories . 37
The Sample Project 37
The Traditional Approach 42
Bootstrapping the Sample Code 44
Using Spring Data Repositories 47

Transactionality 50
Repository Querydsl Integration 51

5. Type-Safe JDBC Programming with Querydsl SQL . 53
The Sample Project and Setup 53

The HyperSQL Database 54
The SQL Module of Querydsl 54
Build System Integration 58
The Database Schema 59
The Domain Implementation of the Sample Project 60

The QueryDslJdbcTemplate 63
Executing Queries 64

The Beginning of the Repository Implementation 64
Querying for a Single Object 65
The OneToManyResultSetExtractor Abstract Class 67
The CustomerListExtractor Implementation 68
The Implementations for the RowMappers 69
Querying for a List of Objects 71

Insert, Update, and Delete Operations 71
Inserting with the SQLInsertClause 71
Updating with the SQLUpdateClause 72
Deleting Rows with the SQLDeleteClause 73

Part III. NoSQL

6. MongoDB: A Document Store . 77
MongoDB in a Nutshell 77

Setting Up MongoDB 78
Using the MongoDB Shell 79

viii | Table of Contents

The MongoDB Java Driver 80
Setting Up the Infrastructure Using the Spring Namespace 81
The Mapping Subsystem 83

The Domain Model 83
Setting Up the Mapping Infrastructure 89
Indexing 91
Customizing Conversion 91

MongoTemplate 94
Mongo Repositories 96

Infrastructure Setup 96
Repositories in Detail 97
Mongo Querydsl Integration 99

7. Neo4j: A Graph Database . 101
Graph Databases 101
Neo4j 102
Spring Data Neo4j Overview 105
Modeling the Domain as a Graph 106
Persisting Domain Objects with Spring Data Neo4j 111

Neo4jTemplate 112
Combining Graph and Repository Power 113

Basic Graph Repository Operations 115
Derived and Annotated Finder Methods 116

Advanced Graph Use Cases in the Example Domain 119
Multiple Roles for a Single Node 119
Product Categories and Tags as Examples for In-Graph Indexes 120
Leverage Similar Interests (Collaborative Filtering) 121
Recommendations 121

Transactions, Entity Life Cycle, and Fetch Strategies 122
Advanced Mapping Mode 123
Working with Neo4j Server 124
Continuing From Here 125

8. Redis: A Key/Value Store . 127
Redis in a Nutshell 127

Setting Up Redis 127
Using the Redis Shell 128

Connecting to Redis 129
Object Conversion 130
Object Mapping 132
Atomic Counters 134
Pub/Sub Functionality 135

Listening and Responding to Messages 135

Table of Contents | ix

Using Spring’s Cache Abstraction with Redis 136

Part IV. Rapid Application Development

9. Persistence Layers with Spring Roo . 141
A Brief Introduction to Roo 141
Roo’s Persistence Layers 143
Quick Start 143

Using Roo from the Command Line 143
Using Roo with Spring Tool Suite 145

A Spring Roo JPA Repository Example 147
Creating the Project 147
Setting Up JPA Persistence 148
Creating the Entities 148
Defining the Repositories 150
Creating the Web Layer 150
Running the Example 151

A Spring Roo MongoDB Repository Example 152
Creating the Project 153
Setting Up MongoDB Persistence 153
Creating the Entities 153
Defining the Repositories 154
Creating the Web Layer 154
Running the Example 154

10. REST Repository Exporter . 157
The Sample Project 158

Interacting with the REST Exporter 160
Accessing Products 162
Accessing Customers 165
Accessing Orders 169

Part V. Big Data

11. Spring for Apache Hadoop . 175
Challenges Developing with Hadoop 176
Hello World 177
Hello World Revealed 179
Hello World Using Spring for Apache Hadoop 183
Scripting HDFS on the JVM 187
Combining HDFS Scripting and Job Submission 190

x | Table of Contents

Job Scheduling 191
Scheduling MapReduce Jobs with a TaskScheduler 191
Scheduling MapReduce Jobs with Quartz 192

12. Analyzing Data with Hadoop . 195
Using Hive 195

Hello World 196
Running a Hive Server 197
Using the Hive Thrift Client 198
Using the Hive JDBC Client 201
Apache Logfile Analysis Using Hive 202

Using Pig 204
Hello World 205
Running a PigServer 207
Controlling Runtime Script Execution 209
Calling Pig Scripts Inside Spring Integration Data Pipelines 211
Apache Logfile Analysis Using Pig 212

Using HBase 214
Hello World 214
Using the HBase Java Client 215

13. Creating Big Data Pipelines with Spring Batch and Spring Integration 219
Collecting and Loading Data into HDFS 219

An Introduction to Spring Integration 220
Copying Logfiles 222
Event Streams 226
Event Forwarding 229
Management 230
An Introduction to Spring Batch 232
Processing and Loading Data from a Database 234

Hadoop Workflows 238
Spring Batch Support for Hadoop 238
Wordcount as a Spring Batch Application 240
Hive and Pig Steps 242

Exporting Data from HDFS 243
From HDFS to JDBC 243
From HDFS to MongoDB 249

Collecting and Loading Data into Splunk 250

Table of Contents | xi

Part VI. Data Grids

14. GemFire: A Distributed Data Grid . 255
GemFire in a Nutshell 255
Caches and Regions 257
How to Get GemFire 257
Configuring GemFire with the Spring XML Namespace 258

Cache Configuration 258
Region Configuration 263
Cache Client Configuration 265
Cache Server Configuration 267
WAN Configuration 267
Disk Store Configuration 268

Data Access with GemfireTemplate 269
Repository Usage 271

POJO Mapping 271
Creating a Repository 272
PDX Serialization 272

Continuous Query Support 273

Bibliography . 275

Index . 277

xii | Table of Contents

Foreword

We live in interesting times. New business processes are driving new requirements.
Familiar assumptions are under threat—among them, that the relational database
should be the default choice for persistence. While this is now widely accepted, it is far
from clear how to proceed effectively into the new world.

A proliferation of data store choices creates fragmentation. Many newer stores require
more developer effort than Java developers are used to regarding data access, pushing
into the application things customarily done in a relational database.

This book helps you make sense of this new reality. It provides an excellent overview
of today’s storage world in the context of today’s hardware, and explains why NoSQL
stores are important in solving modern business problems.

Because of the language’s identification with the often-conservative enterprise market
(and perhaps also because of the sophistication of Java object-relational mapping
[ORM] solutions), Java developers have traditionally been poorly served in the NoSQL
space. Fortunately, this is changing, making this an important and timely book. Spring
Data is an important project, with the potential to help developers overcome new
challenges.

Many of the values that have made Spring the preferred platform for enterprise Java
developers deliver particular benefit in a world of fragmented persistence solutions.
Part of the value of Spring is how it brings consistency (without descending to a lowest
common denominator) in its approach to different technologies with which it integra-
tes. A distinct “Spring way” helps shorten the learning curve for developers and sim-
plifies code maintenance. If you are already familiar with Spring, you will find that
Spring Data eases your exploration and adoption of unfamiliar stores. If you aren’t
already familiar with Spring, this is a good opportunity to see how Spring can simplify
your code and make it more consistent.

The authors are uniquely qualified to explain Spring Data, being the project leaders.
They bring a mix of deep Spring knowledge and involvement and intimate experience
with a range of modern data stores. They do a good job of explaining the motivation
of Spring Data and how it continues the mission Spring has long pursued regarding
data access. There is valuable coverage of how Spring Data works with other parts of

xiii

Spring, such as Spring Integration and Spring Batch. The book also provides much
value that goes beyond Spring—for example, the discussions of the repository concept,
the merits of type-safe querying, and why the Java Persistence API (JPA) is not appro-
priate as a general data access solution.

While this is a book about data access rather than working with NoSQL, many of you
will find the NoSQL material most valuable, as it introduces topics and code with which
you are likely to be less familiar. All content is up to the minute, and important topics
include document databases, graph databases, key/value stores, Hadoop, and the
Gemfire data fabric.

We programmers are practical creatures and learn best when we can be hands-on. The
book has a welcome practical bent. Early on, the authors show how to get the sample
code working in the two leading Java integrated development environments (IDEs),
including handy screenshots. They explain requirements around database drivers and
basic database setup. I applaud their choice of hosting the sample code on GitHub,
making it universally accessible and browsable. Given the many topics the book covers,
the well-designed examples help greatly to tie things together.

The emphasis on practical development is also evident in the chapter on Spring Roo,
the rapid application development (RAD) solution from the Spring team. Most Roo
users are familiar with how Roo can be used with a traditional JPA architecture; the
authors show how Roo’s productivity can be extended beyond relational databases.

When you’ve finished this book, you will have a deeper understanding of why modern
data access is becoming more specialized and fragmented, the major categories of
NoSQL data stores, how Spring Data can help Java developers operate effectively in
this new environment, and where to look for deeper information on individual topics
in which you are particularly interested. Most important, you’ll have a great start to
your own exploration in code!

—Rod Johnson
Creator, Spring Framework

xiv | Foreword

Preface

Overview of the New Data Access Landscape
The data access landscape over the past seven or so years has changed dramatically.
Relational databases, the heart of storing and processing data in the enterprise for over
30 years, are no longer the only game in town. The past seven years have seen the birth
—and in some cases the death—of many alternative data stores that are being used in
mission-critical enterprise applications. These new data stores have been designed
specifically to solve data access problems that relational database can’t handle as
effectively.

An example of a problem that pushes traditional relational databases to the breaking
point is scale. How do you store hundreds or thousands of terabytes (TB) in a relational
database? The answer reminds us of the old joke where the patient says, “Doctor, it
hurts when I do this,” and the doctor says, “Then don’t do that!” Jokes aside, what is
driving the need to store this much data? In 2001, IDC reported that “the amount of
information created and replicated will surpass 1.8 zettabytes and more than double
every two years.”1 New data types range from media files to logfiles to sensor data
(RFID, GPS, telemetry...) to tweets on Twitter and posts on Facebook. While data that
is stored in relational databases is still crucial to the enterprise, these new types of data
are not being stored in relational databases.

While general consumer demands drive the need to store large amounts of media files,
enterprises are finding it important to store and analyze many of these new sources of
data. In the United States, companies in all sectors have at least 100 TBs of stored data
and many have more than 1 petabyte (PB).2 The general consensus is that there are
significant bottom-line benefits for businesses to continually analyze this data. For ex-
ample, companies can better understand the behavior of their products if the
products themselves are sending “phone home” messages about their health. To better
understand their customers, companies can incorporate social media data into their
decision-making processes. This has led to some interesting mainstream media

1. IDC; Extracting Value from Chaos. 2011.

2. IDC; US Bureau of Labor Statistics

xv

http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf

reports—for example, on why Orbitz shows more expensive hotel options to Mac
users and how Target can predict when one of its customers will soon give birth, al-
lowing the company to mail coupon books to the customer’s home before public birth
records are available.

Big data generally refers to the process in which large quantities of data are stored, kept
in raw form, and continually analyzed and combined with other data sources to provide
a deeper understanding of a particular domain, be it commercial or scientific in nature.

Many companies and scientific laboratories had been performing this process before
the term big data came into fashion. What makes the current process different from
before is that the value derived from the intelligence of data analytics is higher than the
hardware costs. It is no longer necessary to buy a 40K per CPU box to perform this type
of data analysis; clusters of commodity hardware now cost $1k per CPU. For large
datasets, the cost of storage area network (SAN) or network area storage (NAS) be-
comes prohibitive: $1 to $10 per gigabyte, while local disk costs only $0.05 per gigabyte
with replication built into the database instead of the hardware. Aggregate data transfer
rates for clusters of commodity hardware that use local disk are also significantly higher
than SAN- or NAS-based systems—500 times faster for similarly priced systems. On
the software side, the majority of the new data access technologies are open source.
While open source does not mean zero cost, it certainly lowers the barrier for entry and
overall cost of ownership versus the traditional commercial software offerings in this
space.

Another problem area that new data stores have identified with relational databases is
the relational data model. If you are interested in analyzing the social graph of millions
of people, doesn’t it sound quite natural to consider using a graph database so that the
implementation more closely models the domain? What if requirements are continually
driving you to change your relational database management system (RDBMS) schema
and object-relational mapping (ORM) layer? Perhaps a “schema-less” document data-
base will reduce the object mapping complexity and provide a more easily evolvable
system as compared to the more rigid relational model. While each of the new databases
is unique in its own way, you can provide a rough taxonomy across most of them based
on their data models. The basic camps they fall into are:

Key/value
A familiar data model, much like a hashtable.

Column family
An extended key/value data model in which the value data type can also be a se-
quence of key/value pairs.

Document
Collections that contain semistructured data, such as XML or JSON.

Graph
Based on graph theory. The data model has nodes and edges, each of which may
have properties.

xvi | Preface

http://on.wsj.com/UhSlNi
http://on.wsj.com/UhSlNi
http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html

The general name under which these new databases have become grouped is “NoSQL
databases.” In retrospect, this name, while catchy, isn’t very accurate because it seems
to imply that you can’t query the database, which isn’t true. It reflects the basic shift
away from the relational data model as well as a general shift away from ACID (atom-
icity, consistency, isolation, durability) characteristics of relational databases.

One of the driving factors for the shift away from ACID characteristics is the emergence
of applications that place a higher priority on scaling writes and having a partially
functioning system even when parts of the system have failed. While scaling reads in a
relational database can be achieved through the use of in-memory caches that front the
database, scaling writes is much harder. To put a label on it, these new applications
favor a system that has so-called “BASE” semantics, where the acronym represents
basically available, scalable, eventually consistent. Distributed data grids with a key/
value data model generally have not been grouped into this new wave of NoSQL da-
tabases. However, they offer similar features to NoSQL databases in terms of the scale
of data they can handle as well as distributed computation features that colocate com-
puting power and data.

As you can see from this brief introduction to the new data access landscape, there is
a revolution taking place, which for data geeks is quite exciting. Relational databases
are not dead; they are still central to the operation of many enterprises and will remain
so for quite some time. The trends, though, are very clear: new data access technologies
are solving problems that traditional relational databases can’t, so we need to broaden
our skill set as developers and have a foot in both camps.

The Spring Framework has a long history of simplifying the development of Java ap-
plications, in particular for writing RDBMS-based data access layers that use Java
database connectivity (JDBC) or object-relational mappers. In this book we aim to help
developers get a handle on how to effectively develop Java applications across a wide
range of these new technologies. The Spring Data project directly addresses these new
technologies so that you can extend your existing knowledge of Spring to them, or
perhaps learn more about Spring as a byproduct of using Spring Data. However, it
doesn’t leave the relational database behind. Spring Data also provides an extensive set
of new features to Spring’s RDBMS support.

How to Read This Book
This book is intended to give you a hands-on introduction to the Spring Data project,
whose core mission is to enable Java developers to use state-of-the-art data processing
and manipulation tools but also use traditional databases in a state-of-the-art manner.
We’ll start by introducing you to the project, outlining the primary motivation of
SpringSource and the team. We’ll also describe the domain model of the sample
projects that accommodate each of the later chapters, as well as how to access and set
up the code (Chapter 1).

Preface | xvii

We’ll then discuss the general concepts of Spring Data repositories, as they are a com-
mon theme across the various store-specific parts of the project (Chapter 2). The same
applies to Querydsl, which is discussed in general in Chapter 3. These two chapters
provide a solid foundation to explore the store specific integration of the repository
abstraction and advanced query functionality.

To start Java developers in well-known terrain, we’ll then spend some time on tradi-
tional persistence technologies like JPA (Chapter 4) and JDBC (Chapter 5). Those
chapters outline what features the Spring Data modules add on top of the already ex-
isting JPA and JDBC support provided by Spring.

After we’ve finished that, we introduce some of the NoSQL stores supported by the
Spring Data project: MongoDB as an example of a document database (Chapter 6),
Neo4j as an example of a graph database (Chapter 7), and Redis as an example of a
key/value store (Chapter 8). HBase, a column family database, is covered in a later
chapter (Chapter 12). These chapters outline mapping domain classes onto the store-
specific data structures, interacting easily with the store through the provided appli-
cation programming interface (API), and using the repository abstraction.

We’ll then introduce you to the Spring Data REST exporter (Chapter 10) as well as the
Spring Roo integration (Chapter 9). Both projects build on the repository abstraction
and allow you to easily export Spring Data−managed entities to the Web, either as a
representational state transfer (REST) web service or as backing to a Spring Roo−built
web application.

The book next takes a tour into the world of big data—Hadoop and Spring for Apache
Hadoop in particular. It will introduce you to using cases implemented with Hadoop
and show how the Spring Data module eases working with Hadoop significantly
(Chapter 11). This leads into a more complex example of building a big data pipeline
using Spring Batch and Spring Integration—projects that come nicely into play in big
data processing scenarios (Chapter 12 and Chapter 13).

The final chapter discusses the Spring Data support for Gemfire, a distributed data grid
solution (Chapter 14).

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

xviii | Preface

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Spring Data by Mark Pollack, Oliver
Gierke, Thomas Risberg, Jon Brisbin, and Michael Hunger (O’Reilly). Copyright 2013
Mark Pollack, Oliver Gierke, Thomas Risberg, Jonathan L. Brisbin, and Michael Hun-
ger, 978-1-449-32395-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

The code samples are posted on GitHub.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Preface | xix

mailto:permissions@oreilly.com
https://github.com/SpringSource/spring-data-book
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/spring-data-1e.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xx | Preface

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/spring-data-1e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank Rod Johnson and Emil Eifrem for starting what was to become
the Spring Data project.

A big thank you goes to David Turanski for pitching in and helping out with the
GemFire chapter. Thank you to Richard McDougall for the big data statistics used in
the introduction, and to Costin Leau for help with writing the Hadoop sample appli-
cations.

We would also like to thank O’Reilly Media, especially Meghan Blanchette for guiding
us through the project, production editor Kristen Borg, and copyeditor Rachel Mona-
ghan. Thanks to Greg Turnquist, Joris Kuipers, Johannes Hiemer, Joachim Arrasz,
Stephan Hochdörfer, Mark Spritzler, Jim Webber, Lasse Westh-Nielsen, and all other
technical reviewers for their feedback. Thank you to the community around the project
for sending feedback and issues so that we could constantly improve. Last but not least,
thanks to our friends and families for their patience, understanding, and support.

Preface | xxi

PART I

Background

CHAPTER 1

The Spring Data Project

The Spring Data project was coined at Spring One 2010 and originated from a hacking
session of Rod Johnson (SpringSource) and Emil Eifrem (Neo Technologies) early that
year. They were trying to integrate the Neo4j graph database with the Spring Frame-
work and evaluated different approaches. The session created the foundation for what
would eventually become the very first version of the Neo4j module of Spring Data, a
new SpringSource project aimed at supporting the growing interest in NoSQL data
stores, a trend that continues to this day.

Spring has provided sophisticated support for traditional data access technologies from
day one. It significantly simplified the implementation of data access layers, regardless
of whether JDBC, Hibernate, TopLink, JDO, or iBatis was used as persistence tech-
nology. This support mainly consisted of simplified infrastructure setup and resource
management as well as exception translation into Spring’s DataAccessExceptions. This
support has matured over the years and the latest Spring versions contained decent
upgrades to this layer of support.

The traditional data access support in Spring has targeted relational databases only, as
they were the predominant tool of choice when it came to data persistence. As NoSQL
stores enter the stage to provide reasonable alternatives in the toolbox, there’s room to
fill in terms of developer support. Beyond that, there are yet more opportunities for
improvement even for the traditional relational stores. These two observations are the
main drivers for the Spring Data project, which consists of dedicated modules for
NoSQL stores as well as JPA and JDBC modules with additional support for relational
databases.

NoSQL Data Access for Spring Developers
Although the term NoSQL is used to refer to a set of quite young data stores, all of the
stores have very different characteristics and use cases. Ironically, it’s the nonfeature
(the lack of support for running queries using SQL) that actually named this group of
databases. As these stores have quite different traits, their Java drivers have completely

3

different APIs to leverage the stores’ special traits and features. Trying to abstract away
their differences would actually remove the benefits each NoSQL data store offers. A
graph database should be chosen to store highly interconnected data. A document
database should be used for tree and aggregate-like data structures. A key/value store
should be chosen if you need cache-like functionality and access patterns.

With the JPA, the Java EE (Enterprise Edition) space offers a persistence API that could
have been a candidate to front implementations of NoSQL databases. Unfortunately,
the first two sentences of the specification already indicate that this is probably not
working out:

This document is the specification of the Java API for the management of persistence and
object/relational mapping with Java EE and Java SE. The technical objective of this work
is to provide an object/relational mapping facility for the Java application developer using
a Java domain model to manage a relational database.

This theme is clearly reflected in the specification later on. It defines concepts and APIs
that are deeply connected to the world of relational persistence. An @Table annotation
would not make a lot of sense for NoSQL databases, nor would @Column or @JoinCol
umn. How should one implement the transaction API for stores like MongoDB, which
essentially do not provide transactional semantics spread across multidocument
manipulations? So implementing a JPA layer on top of a NoSQL store would result in
a profile of the API at best.

On the other hand, all the special features NoSQL stores provide (geospatial function-
ality, map-reduce operations, graph traversals) would have to be implemented in a
proprietary fashion anyway, as JPA simply does not provide abstractions for them. So
we would essentially end up in a worst-of-both-worlds scenario—the parts that can be
implemented behind JPA plus additional proprietary features to reenable store-
specific features.

This context rules out JPA as a potential abstraction API for these stores. Still, we would
like to see the programmer productivity and programming model consistency known
from various Spring ecosystem projects to simplify working with NoSQL stores. This
led the Spring Data team to declare the following mission statement:

Spring Data provides a familiar and consistent Spring-based programming model for
NoSQL and relational stores while retaining store-specific features and capabilities.

So we decided to take a slightly different approach. Instead of trying to abstract all
stores behind a single API, the Spring Data project provides a consistent programming
model across the different store implementations using patterns and abstractions
already known from within the Spring Framework. This allows for a consistent expe-
rience when you’re working with different stores.

4 | Chapter 1: The Spring Data Project

General Themes
A core theme of the Spring Data project available for all of the stores is support for
configuring resources to access the stores. This support is mainly implemented as XML
namespace and support classes for Spring JavaConfig and allows us to easily set up
access to a Mongo database, an embedded Neo4j instance, and the like. Also, integra-
tion with core Spring functionality like JMX is provided, meaning that some stores will
expose statistics through their native API, which will be exposed to JMX via Spring
Data.

Most of the NoSQL Java APIs do not provide support to map domain objects onto the
stores’ data abstractions (documents in MongoDB; nodes and relationships for Neo4j).
So, when working with the native Java drivers, you would usually have to write a sig-
nificant amount of code to map data onto the domain objects of your application when
reading, and vice versa on writing. Thus, a very core part of the Spring Data modules
is a mapping and conversion API that allows obtaining metadata about domain classes
to be persistent and enables the actual conversion of arbitrary domain objects into store-
specific data types.

On top of that, we’ll find opinionated APIs in the form of template pattern implemen-
tations already well known from Spring’s JdbcTemplate, JmsTemplate, etc. Thus, there
is a RedisTemplate, a MongoTemplate, and so on. As you probably already know, these
templates offer helper methods that allow us to execute commonly needed operations
like persisting an object with a single statement while automatically taking care of ap-
propriate resource management and exception translation. Beyond that, they expose
callback APIs that allow you to access the store-native APIs while still getting exceptions
translated and resources managed properly.

These features already provide us with a toolbox to implement a data access layer like
we’re used to with traditional databases. The upcoming chapters will guide you through
this functionality. To ease that process even more, Spring Data provides a repository
abstraction on top of the template implementation that will reduce the effort to im-
plement data access objects to a plain interface definition for the most common sce-
narios like performing standard CRUD operations as well as executing queries in case
the store supports that. This abstraction is actually the topmost layer and blends the
APIs of the different stores as much as reasonably possible. Thus, the store-specific
implementations of it share quite a lot of commonalities. This is why you’ll find a
dedicated chapter (Chapter 2) introducing you to the basic programming model.

Now let’s take a look at our sample code and the domain model that we will use to
demonstrate the features of the particular store modules.

General Themes | 5

The Domain
To illustrate how to work with the various Spring Data modules, we will be using a
sample domain from the ecommerce sector (see Figure 1-1). As NoSQL data stores
usually have a dedicated sweet spot of functionality and applicability, the individual
chapters might tweak the actual implementation of the domain or even only partially
implement it. This is not to suggest that you have to model the domain in a certain
way, but rather to emphasize which store might actually work better for a given appli-
cation scenario.

Figure 1-1. The domain model

At the core of our model, we have a customer who has basic data like a first name, a
last name, an email address, and a set of addresses in turn containing street, city, and
country. We also have products that consist of a name, a description, a price, and
arbitrary attributes. These abstractions form the basis of a rudimentary CRM (customer
relationship management) and inventory system. On top of that, we have orders a
customer can place. An order contains the customer who placed it, shipping and billing
addresses, the date the order was placed, an order status, and a set of line items. These
line items in turn reference a particular product, the number of products to be ordered,
and the price of the product.

The Sample Code
The sample code for this book can be found on GitHub. It is a Maven project containing
a module per chapter. It requires either a Maven 3 installation on your machine or an
IDE capable of importing Maven projects such as the Spring Tool Suite (STS). Getting
the code is as simple as cloning the repository:

6 | Chapter 1: The Spring Data Project

https://github.com/SpringSource/spring-data-book

$ cd ~/dev
$ git clone https://github.com/SpringSource/spring-data-book.git
Cloning into 'spring-data-book'...
remote: Counting objects: 253, done.
remote: Compressing objects: 100% (137/137), done.
Receiving objects: 100% (253/253), 139.99 KiB | 199 KiB/s, done.
remote: Total 253 (delta 91), reused 219 (delta 57)
Resolving deltas: 100% (91/91), done.
$ cd spring-data-book

You can now build the code by executing Maven from the command line as follows:

$ mvn clean package

This will cause Maven to resolve dependencies, compile and test code, execute tests,
and package the modules eventually.

Importing the Source Code into Your IDE

STS/Eclipse

STS ships with the m2eclipse plug-in to easily work with Maven projects right inside
your IDE. So, if you have it already downloaded and installed (have a look at Chap-
ter 3 for details), you can choose the Import option of the File menu. Select the Existing
Maven Projects option from the dialog box, shown in Figure 1-2.

Figure 1-2. Importing Maven projects into Eclipse (step 1 of 2)

The Sample Code | 7

In the next window, select the folder in which you’ve just checked out the project using
the Browse button. After you’ve done so, the pane right below should fill with the
individual Maven modules listed and checked (Figure 1-3). Proceed by clicking on
Finish, and STS will import the selected Maven modules into your workspace. It will
also resolve the necessary dependencies and source folder according to the pom.xml
file in the module’s root directory.

Figure 1-3. Importing Maven projects into Eclipse (step 2 of 2)

You should eventually end up with a Package or Project Explorer looking something
like Figure 1-4. The projects should compile fine and contain no red error markers.

The projects using Querydsl (see Chapter 5 for details) might still carry a red error
marker. This is due to the m2eclipse plug-in needing additional information about
when to execute the Querydsl-related Maven plug-ins in the IDE build life cycle. The
integration for that can be installed from the m2e-querydsl extension update site; you’ll
find the most recent version of it at the project home page. Copy the link to the latest
version listed there (0.0.3, at the time of this writing) and add it to the list of available
update sites, as shown in Figure 1-5. Installing the feature exposed through that update
site, restarting Eclipse, and potentially updating the Maven project configuration (right-
click on the project→Maven→Update Project) should let you end up with all the projects
without Eclipse error markers and building just fine.

8 | Chapter 1: The Spring Data Project

http://ilx.github.com/m2e-querydsl

IntelliJ IDEA

IDEA is able to open Maven project files directly without any further setup needed.
Select the Open Project menu entry to show the dialog box (see Figure 1-6).

The IDE opens the project and fetches needed dependencies. In the next step (shown
in Figure 1-7), it detects used frameworks (like the Spring Framework, JPA, WebApp);
use the Configure link in the pop up or the Event Log to configure them.

The project is then ready to be used. You will see the Project view and the Maven
Projects view, as shown in Figure 1-8. Compile the project as usual.

Figure 1-4. Eclipse Project Explorer with import finished

Figure 1-5. Adding the m2e-querydsl update site

The Sample Code | 9

Figure 1-6. Importing Maven projects into IDEA (step 1 of 2)

Figure 1-7. Importing Maven projects into IDEA (step 2 of 2)

10 | Chapter 1: The Spring Data Project

Figure 1-8. IDEA with the Spring Data Book project opened

Next you must add JPA support in the Spring Data JPA module to enable finder method
completion and error checking of repositories. Just right-click on the module and
choose Add Framework. In the resulting dialog box, check JavaEE Persistence support
and select Hibernate as the persistence provider (Figure 1-9). This will create a src/main/
java/resources/META-INF/persistence.xml file with just a persistence-unit setup.

Figure 1-9. Enable JPA support for the Spring Data JPA module

The Sample Code | 11

CHAPTER 2

Repositories: Convenient Data
Access Layers

Implementing the data access layer of an application has been cumbersome for quite a
while. Too much boilerplate code had to be written. Domain classes were anemic and
not designed in a real object-oriented or domain-driven manner. The goal of the repos-
itory abstraction of Spring Data is to reduce the effort required to implement data access
layers for various persistence stores significantly. The following sections will introduce
the core concepts and interfaces of Spring Data repositories. We will use the Spring
Data JPA module as an example and discuss the basic concepts of the repository ab-
straction. For other stores, make sure you adapt the examples accordingly.

Quick Start
Let’s take the Customer domain class from our domain that will be persisted to an ar-
bitrary store. The class might look something like Example 2-1.

Example 2-1. The Customer domain class

public class Customer {

 private Long id;
 private String firstname;
 private String lastname;
 private EmailAddress emailAddress;
 private Address address;

 …
}

A traditional approach to a data access layer would now require you to at least imple-
ment a repository class that contains necessary CRUD (Create, Read, Update, and
Delete) methods as well as query methods to access subsets of the entities stored by
applying restrictions on them. The Spring Data repository approach allows you to get

13

rid of most of the implementation code and instead start with a plain interface definition
for the entity’s repository, as shown in Example 2-2.

Example 2-2. The CustomerRepository interface definition

public interface CustomerRepository extends Repository<Customer, Long> {
 …
}

As you can see, we extend the Spring Data Repository interface, which is just a generic
marker interface. Its main responsibility is to allow the Spring Data infrastructure to
pick up all user-defined Spring Data repositories. Beyond that, it captures the type of
the domain class managed alongside the type of the ID of the entity, which will come
in quite handy at a later stage. To trigger the autodiscovery of the interfaces declared,
we use either the <repositories /> element of the store-specific XML namespace
(Example 2-3) or the related @Enable…Repositories annotation in case we’re using
JavaConfig (Example 2-4). In our sample case, we will use JPA. We just need to con-
figure the XML element’s base-package attribute with our root package so that Spring
Data will scan it for repository interfaces. The annotation can also get a dedicated
package configured to scan for interfaces. Without any further configuration given, it
will simply inspect the package of the annotated class.

Example 2-3. Activating Spring Data repository support using XML

<?xml version="1.0" encoding="UTF-8"?>
<beans:beans xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jpa="http://www.springframework.org/schema/data/jpa"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/jpa
 http://www.springframework.org/schema/data/jpa/spring-jpa.xsd">

 <jpa:repositories base-package="com.acme.**.repository" />

</beans>

Example 2-4. Activating Spring Data repository support using Java Config

@Configuration
@EnableJpaRepositories
class ApplicationConfig {

}

Both the XML and JavaConfig configuration will need to be enriched with store-specific
infrastructure bean declarations, such as a JPA EntityManagerFactory, a DataSource,
and the like. For other stores, we simply use the corresponding namespace elements or
annotations. The configuration snippet, shown in Example 2-5, will now cause the
Spring Data repositories to be found, and Spring beans will be created that actually

14 | Chapter 2: Repositories: Convenient Data Access Layers

consist of proxies that will implement the discovered interface. Thus a client could now
go ahead and get access to the bean by letting Spring simply autowire it.

Example 2-5. Using a Spring Data repository from a client

@Component
public class MyRepositoryClient {

 private final CustomerRepository repository;

 @Autowired
 public MyRepositoryClient(CustomerRepository repository) {
 Assert.notNull(repository);
 this.repository = repository;
 }

 …
}

With our CustomerRepository interface set up, we are ready to dive in and add some
easy-to-declare query methods. A typical requirement might be to retrieve a Customer
by its email address. To do so, we add the appropriate query method (Example 2-6).

Example 2-6. Declaring a query method

public interface CustomerRepository extends Repository<Customer, Long> {

 Customer findByEmailAddress(EmailAddress email);
}

The namespace element will now pick up the interface at container startup time and
trigger the Spring Data infrastructure to create a Spring bean for it. The infrastructure
will inspect the methods declared inside the interface and try to determine a query to
be executed on method invocation. If you don’t do anything more than declare the
method, Spring Data will derive a query from its name. There are other options for
query definition as well; you can read more about them in “Defining Query Meth-
ods” on page 16.

In Example 2-6, the query can be derived because we followed the naming convention
of the domain object’s properties. The Email part of the query method name actually
refers to the Customer class’s emailAddress property, and thus Spring Data will auto-
matically derive select C from Customer c where c.emailAddress = ?1 for the method
declaration if you were using the JPA module. It will also check that you have valid
property references inside your method declaration, and cause the container to fail to
start on bootstrap time if it finds any errors. Clients can now simply execute the method,
causing the given method parameters to be bound to the query derived from the method
name and the query to be executed (Example 2-7).

Quick Start | 15

Example 2-7. Executing a query method

@Component
public class MyRepositoryClient {

 private final CustomerRepository repository;

 …

 public void someBusinessMethod(EmailAddress email) {

 Customer customer = repository.findByEmailAddress(email);
 }
}

Defining Query Methods

Query Lookup Strategies
The interface we just saw had a simple query method declared. The method declaration
was inspected by the infrastructure and parsed, and a store-specific query was derived
eventually. However, as the queries become more complex, the method names would
just become awkwardly long. For more complex queries, the keywords supported by
the method parser wouldn’t even suffice. Thus, the individual store modules ship with
an @Query annotation, demonstrated in Example 2-8, that takes a query string in the
store-specific query language and potentially allows further tweaks regarding the query
execution.

Example 2-8. Manually defining queries using the @Query annotation

public interface CustomerRepository extends Repository<Customer, Long> {

 @Query("select c from Customer c where c.emailAddress = ?1")
 Customer findByEmailAddress(EmailAddress email);
}

Here we use JPA as an example and manually define the query that would have been
derived anyway.

The queries can even be externalized into a properties file—$store-named-quer-
ies.properties, located in META-INF—where $store is a placeholder for jpa, mongo,
neo4j, etc. The key has to follow the convention of $domainType.$methodName. Thus, to
back our existing method with a externalized named query, the key would have to be
Customer.findByEmailAddress. The @Query annotation is not needed if named queries
are used.

16 | Chapter 2: Repositories: Convenient Data Access Layers

Query Derivation
The query derivation mechanism built into the Spring Data repository infrastructure,
shown in Example 2-9, is useful to build constraining queries over entities of the repos-
itory. We will strip the prefixes findBy, readBy, and getBy from the method and start
parsing the rest of it. At a very basic level, you can define conditions on entity properties
and concatenate them with And and Or.

Example 2-9. Query derivation from method names

public interface CustomerRepository extends Repository<Customer, Long> {

 List<Customer> findByEmailAndLastname(EmailAddress email, String lastname);
}

The actual result of parsing that method will depend on the data store we use. There
are also some general things to notice. The expressions are usually property traversals
combined with operators that can be concatenated. As you can see in Example 2-9, you
can combine property expressions with And and Or. Beyond that, you also get support
for various operators like Between, LessThan, GreaterThan, and Like for the property
expressions. As the operators supported can vary from data store to data store, be sure
to look at each store’s corresponding chapter.

Property expressions

Property expressions can just refer to a direct property of the managed entity (as you
just saw in Example 2-9). On query creation time, we already make sure that the parsed
property is a property of the managed domain class. However, you can also define
constraints by traversing nested properties. As seen above, Customers have Addresses
with ZipCodes. In that case, a method name of:

List<Customer> findByAddressZipCode(ZipCode zipCode);

will create the property traversal x.address.zipCode. The resolution algorithm starts
with interpreting the entire part (AddressZipCode) as a property and checks the domain
class for a property with that name (with the first letter lowercased). If it succeeds, it
just uses that. If not, it starts splitting up the source at the camel case parts from the
right side into a head and a tail and tries to find the corresponding property (e.g.,
AddressZip and Code). If it finds a property with that head, we take the tail and continue
building the tree down from there. Because in our case the first split does not match,
we move the split point further to the left (from “AddressZip, Code” to “Address, Zip
Code”).

Although this should work for most cases, there might be situations where the algo-
rithm could select the wrong property. Suppose our Customer class has an addressZip
property as well. Then our algorithm would match in the first split, essentially choosing
the wrong property, and finally fail (as the type of addressZip probably has no code

Defining Query Methods | 17

property). To resolve this ambiguity, you can use an underscore (_) inside your method
name to manually define traversal points. So our method name would end up like so:

List<Customer> findByAddress_ZipCode(ZipCode zipCode);

Pagination and Sorting
If the number of results returned from a query grows significantly, it might make sense
to access the data in chunks. To achieve that, Spring Data provides a pagination API
that can be used with the repositories. The definition for what chunk of data needs to
be read is hidden behind the Pageable interface alongside its implementation PageRe
quest. The data returned from accessing it page by page is held in a Page, which not
only contains the data itself but also metainformation about whether it is the first or
last page, how many pages there are in total, etc. To calculate this metadata, we will
have to trigger a second query as well as the initial one.

We can use the pagination functionality with the repository by simply adding a Pagea
ble as a method parameter. Unlike the others, this will not be bound to the query, but
rather used to restrict the result set to be returned. One option is to have a return type
of Page, which will restrict the results, but require another query to calculate the met-
ainformation (e.g., the total number of elements available). Our other option is to use
List, which will avoid the additional query but won’t provide the metadata. If you don’t
need pagination functionality, but plain sorting only, add a Sort parameter to the
method signature (see Example 2-10).

Example 2-10. Query methods using Pageable and Sort

Page<Customer> findByLastname(String lastname, Pageable pageable);

List<Customer> findByLastname(String lastname, Sort sort);

List<Customer> findByLastname(String lastname, Pageable pageable);

The first method allows you to pass a Pageable instance to the query method to dy-
namically add paging to your statically defined query. Sorting options can either be
handed into the method by the Sort parameter explicitly, or embedded in the PageRe
quest value object, as you can see in Example 2-11.

Example 2-11. Using Pageable and Sort

Pageable pageable = new PageRequest(2, 10, Direction.ASC, "lastname", "firstname");
Page<Customer> result = findByLastname("Matthews", pageable);

Sort sort = new Sort(Direction.DESC, "Matthews");
List<Customer> result = findByLastname("Matthews", sort);

18 | Chapter 2: Repositories: Convenient Data Access Layers

Defining Repositories
So far, we have seen repository interfaces with query methods derived from the method
name or declared manually, depending on the means provided by the Spring Data
module for the actual store. To derive these queries, we had to extend a Spring Data–
specific marker interface: Repository. Apart from queries, there is usually quite a bit of
functionality that you need to have in your repositories: the ability to store objects, to
delete them, look them up by ID, return all entities stored, or access them page by page.
The easiest way to expose this kind of functionality through the repository interfaces
is by using one of the more advanced repository interfaces that Spring Data provides:

Repository
A plain marker interface to let the Spring Data infrastructure pick up user-defined
repositories

CrudRepository
Extends Repository and adds basic persistence methods like saving, finding, and
deleting entities

PagingAndSortingRepositories
Extends CrudRepository and adds methods for accessing entities page by page and
sorting them by given criteria

Suppose we want to expose typical CRUD operations for the CustomerRepository. All
we need to do is change its declaration as shown in Example 2-12.

Example 2-12. CustomerRepository exposing CRUD methods

public interface CustomerRepository extends CrudRepository<Customer, Long> {

 List<Customer> findByEmailAndLastname(EmailAddress email, String lastname);
}

The CrudRepository interface now looks something like Example 2-13. It contains
methods to save a single entity as well as an Iterable of entities, finder methods for a
single entity or all entities, and delete(…) methods of different flavors.

Example 2-13. CrudRepository

public interface CrudRepository<T, ID extends Serializable> extends Repository<T, ID> {

 <S extends T> save(S entity);
 <S extends T> Iterable<S> save(Iterable<S> entities);

 T findOne(ID id);
 Iterable<T> findAll();

 void delete(ID id);
 void delete(T entity);
 void deleteAll();
}

Defining Repositories | 19

Each of the Spring Data modules supporting the repository approach ships with an
implementation of this interface. Thus, the infrastructure triggered by the namespace
element declaration will not only bootstrap the appropriate code to execute the query
methods, but also use an instance of the generic repository implementation class to
back the methods declared in CrudRepository and eventually delegate calls to save(…),
findAll(), etc., to that instance. PagingAndSortingRepository (Example 2-14) now in
turn extends CrudRepository and adds methods to allow handing instances of Pagea
ble and Sort into the generic findAll(…) methods to actually access entities page by
page.

Example 2-14. PagingAndSortingRepository

public interface PagingAndSortingRepository<T, ID extends Serializable>
 extends CrudRepository<T, ID> {

 Iterable<T> findAll(Sort sort);

 Page<T> findAll(Pageable pageable);
}

To pull that functionality into the CustomerRepository, you’d simply extend PagingAnd
SortingRepository instead of CrudRepository.

Fine-Tuning Repository Interfaces
As we’ve just seen, it’s very easy to pull in chunks of predefined functionality by ex-
tending the appropriate Spring Data repository interface. The decision to implement
this level of granularity was actually driven by the trade-off between the number of
interfaces (and thus complexity) we would expose in the event that we had separator
interfaces for all find methods, all save methods, and so on, versus the ease of use for
developers.

However, there might be scenarios in which you’d like to expose only the reading
methods (the R in CRUD) or simply prevent the delete methods from being exposed
in your repository interfaces. Spring Data now allows you to tailor a custom base
repository with the following steps:

1. Create an interface either extending Repository or annotated with @Repository
Definition.

2. Add the methods you want to expose to it and make sure they actually match the
signatures of methods provided by the Spring Data base repository interfaces.

3. Use this interface as a base interface for the interface declarations for your entities.

To illustrate this, let’s assume we’d like to expose only the findAll(…) method taking
a Pageable as well as the save methods. The base repository interface would look like
Example 2-15.

20 | Chapter 2: Repositories: Convenient Data Access Layers

Example 2-15. Custom base repository interface

@NoRepositoryBean
public interface BaseRepository<T, ID extends Serializable> extends Repository<T, ID> {

 Iterable<T> findAll(Pageable sort);

 <S extends T> S save(S entity);

 <S extends T> S save(Iterable<S> entities);
}

Note that we additionally annotated the interface with @NoRepositoryBean to make sure
the Spring Data repository infrastructure doesn’t actually try to create a bean instance
for it. Letting your CustomerRepository extend this interface will now expose exactly
the API you defined.

It’s perfectly fine to come up with a variety of base interfaces (e.g., a ReadOnlyReposi
tory or a SaveOnlyRepository) or even a hierarchy of them depending on the needs of
your project. We usually recommend starting with locally defined CRUD methods
directly in the concrete repository for an entity and then moving either to the Spring
Data–provided base repository interfaces or tailor-made ones if necessary. That way,
you keep the number of artifacts naturally growing with the project’s complexity.

Manually Implementing Repository Methods
So far we have seen two categories of methods on a repository: CRUD methods and
query methods. Both types are implemented by the Spring Data infrastructure, either
by a backing implementation or the query execution engine. These two cases will
probably cover a broad range of data access operations you’ll face when building ap-
plications. However, there will be scenarios that require manually implemented code.
Let’s see how we can achieve that.

We start by implementing just the functionality that actually needs to be implemented
manually, and follow some naming conventions with the implementation class (as
shown in Example 2-16).

Example 2-16. Implementing custom functionality for a repository

interface CustomerRepositoryCustom {

 Customer myCustomMethod(…);
}

class CustomerRepositoryImpl implements CustomerRepositoryCustom {

 // Potentially wire dependencies

 public Customer myCustomMethod(…) {
 // custom implementation code goes here

Defining Repositories | 21

 }
}

Neither the interface nor the implementation class has to know anything about Spring
Data. This works pretty much the way that you would manually implement code with
Spring. The most interesting piece of this code snippet in terms of Spring Data is that
the name of the implementation class follows the naming convention to suffix the core
repository interface’s (CustomerRepository in our case) name with Impl. Also note that
we kept both the interface as well as the implementation class as package private to
prevent them being accessed from outside the package.

The final step is to change the declaration of our original repository interface to extend
the just-introduced one, as shown in Example 2-17.

Example 2-17. Including custom functionality in the CustomerRepository

public interface CustomerRepository extends CrudRepository<Customer, Long>,
 CustomerRepositoryCustom { … }

Now we have essentially pulled the API exposed in CustomerRepositoryCustom into our
CustomerRepository, which makes it the central access point of the data access API for
Customers. Thus, client code can now call CustomerRepository.myCustomMethod(…). But
how does the implementation class actually get discovered and brought into the proxy
to be executed eventually? The bootstrap process for a repository essentially looks as
follows:

1. The repository interface is discovered (e.g., CustomerRepository).

2. We’re trying to look up a bean definition with the name of the lowercase interface
name suffixed by Impl (e.g., customerRepositoryImpl). If one is found, we’ll use that.

3. If not, we scan for a class with the name of our core repository interface suffixed
by Impl (e.g., CustomerRepositoryImpl, which will be picked up in our case). If one
is found, we register this class as a Spring bean and use that.

4. The found custom implementation will be wired to the proxy configuration for the
discovered interface and act as a potential target for method invocation.

This mechanism allows you to easily implement custom code for a dedicated repository.
The suffix used for implementation lookup can be customized on the XML namespace
element or an attribute of the repository enabling annotation (see the individual store
chapters for more details on that). The reference documentation also contains some
material on how to implement custom behavior to be applied to multiple repositories.

IDE Integration
As of version 3.0, the Spring Tool Suite (STS) provides integration with the Spring Data
repository abstraction. The core area of support provided for Spring Data by STS is the
query derivation mechanism for finder methods. The first thing it helps you with to

22 | Chapter 2: Repositories: Convenient Data Access Layers

http://bit.ly/VzYToo
http://www.springsource.org/sts
http://dist.springsource.com/release/TOOLS/update/e3.8
http://dist.springsource.com/release/TOOLS/update/e4.2

validate your derived query methods right inside the IDE so that you don’t actually
have to bootstrap an ApplicationContext, but can eagerly detect typos you introduce
into your method names.

STS is a special Eclipse distribution equipped with a set of plug-ins to
ease building Spring applications as much as possible. The tool can be
downloaded from the project’s website or installed into an plain Eclipse
distribution by using the STS update site (based on Eclipse 3.8 or 4.2).

As you can see in Figure 2-1, the IDE detects that Descrption is not valid, as there is no
such property available on the Product class. To discover these typos, it will analyze
the Product domain class (something that bootstrapping the Spring Data repository
infrastructure would do anyway) for properties and parse the method name into a
property traversal tree. To avoid these kinds of typos as early as possible, STS’s Spring
Data support offers code completion for property names, criteria keywords, and con-
catenators like And and Or (see Figure 2-2).

Figure 2-1. Spring Data STS derived query method name validation

Figure 2-2. Property code completion proposals for derived query methods

IDE Integration | 23

The Order class has a few properties that you might want to refer to. Assuming we’d
like to traverse the billingAddress property, another Cmd+Space (or Ctrl+Space on
Windows) would trigger a nested property traversal that proposes nested properties,
as well as keywords matching the type of the property traversed so far (Figure 2-3).
Thus, String properties would additionally get Like proposed.

Figure 2-3. Nested property and keyword proposals

To put some icing on the cake, the Spring Data STS will make the repositories first-
class citizens of your IDE navigator, marking them with the well-known Spring bean
symbol. Beyond that, the Spring Elements node in the navigator will contain a dedicated
Spring Data Repositories node to contain all repositories found in your application’s
configuration (see Figure 2-4).

As you can see, you can discover the repository interfaces at a quick glance and trace
which configuration element they actually originate from.

IntelliJ IDEA
Finally, with the JPA support enabled, IDEA offers repository finder method comple-
tion derived from property names and the available keyword, as shown in Figure 2-5.

24 | Chapter 2: Repositories: Convenient Data Access Layers

Figure 2-4. Eclipse Project Explorer with Spring Data support in STS

IDE Integration | 25

Figure 2-5. Finder method completion in IDEA editor

26 | Chapter 2: Repositories: Convenient Data Access Layers

CHAPTER 3

Type-Safe Querying Using Querydsl

Writing queries to access data is usually done using Java Strings. The query languages
of choice have been SQL for JDBC as well as HQL/JPQL for Hibernate/JPA. Defining
the queries in plain Strings is powerful but quite error-prone, as it’s very easy to in-
troduce typos. Beyond that, there’s little coupling to the actual query source or sink,
so column references (in the JDBC case) or property references (in the HQL/JPQL
context) become a burden in maintenance because changes in the table or object model
cannot be reflected in the queries easily.

The Querydsl project tries to tackle this problem by providing a fluent API to define
these queries. The API is derived from the actual table or object model but is highly
store- and model-agnostic at the same time, so it allows you to create and use the query
API for a variety of stores. It currently supports JPA, Hibernate, JDO, native JDBC,
Lucene, Hibernate Search, and MongoDB. This versatility is the main reason why the
Spring Data project integrates with Querydsl, as Spring Data also integrates with a
variety of stores. The following sections will introduce you to the Querydsl project and
its basic concepts. We will go into the details of the store-specific support in the store-
related chapters later in this book.

Introduction to Querydsl
When working with Querydsl, you will usually start by deriving a metamodel from
your domain classes. Although the library can also use plain String literals, creating
the metamodel will unlock the full power of Querydsl, especially its type-safe property
and keyword references. The derivation mechanism is based on the Java 6 Annotation
Processing Tool (APT), which allows for hooking into the compiler and processing the
sources or even compiled classes. For details, read up on that topic in “Generating the
Query Metamodel” on page 30. To kick things off, we need to define a domain class
like the one shown in Example 3-1. We model our Customer with a few primitive and
nonprimitive properties.

27

http://www.querydsl.com

Example 3-1. The Customer domain class

@QueryEntity
public class Customer extends AbstractEntity {

 private String firstname, lastname;
 private EmailAddress emailAddress;
 private Set<Address> addresses = new HashSet<Address>();

 …
}

Note that we annotate the class with @QueryEntity. This is the default annotation, from
which the Querydsl annotation processor generates the related query class. When
you’re using the integration with a particular store, the APT processor will be able to
recognize the store-specific annotations (e.g., @Entity for JPA) and use them to derive
the query classes. As we’re not going to work with a store for this introduction and thus
cannot use a store-specific mapping annotation, we simply stick with @QueryEntity.
The generated Querydsl query class will now look like Example 3-2.

Example 3-2. The Querydsl generated query class

@Generated("com.mysema.query.codegen.EntitySerializer")
public class QCustomer extends EntityPathBase<Customer> {

 public static final QCustomer customer = new QCustomer("customer");
 public final QAbstractEntity _super = new QAbstractEntity(this);

 public final NumberPath<Long> id = _super.id;
 public final StringPath firstname = createString("firstname");
 public final StringPath lastname = createString("lastname");
 public final QEmailAddress emailAddress;

 public final SetPath<Address, QAddress> addresses =
 this.<Address, QAddress>createSet("addresses", Address.class, QAddress.class);

 …
}

You can find these classes in the target/generated-sources/queries folder of the module’s
sample project. The class exposes public Path properties and references to other query
classes (e.g., QEmailAddress). This enables your IDE to list the available paths for which
you might want to define predicates during code completion. You can now use these
Path expressions to define reusable predicates, as shown in Example 3-3.

Example 3-3. Using the query classes to define predicates

QCustomer customer = QCustomer.customer;

BooleanExpression idIsNull = customer.id.isNull();
BooleanExpression lastnameContainsFragment = customer.lastname.contains("thews");
BooleanExpression firstnameLikeCart = customer.firstname.like("Cart");

28 | Chapter 3: Type-Safe Querying Using Querydsl

EmailAddress reference = new EmailAddress("dave@dmband.com");
BooleanExpression isDavesEmail = customer.emailAddress.eq(reference);

We assign the static QCustomer.customer instance to the customer variable to be able to
concisely refer to its property paths. As you can see, the definition of a predicate is
clean, concise, and—most importantly—type-safe. Changing the domain class would
cause the query metamodel class to be regenerated. Property references that have be-
come invalidated by this change would become compiler errors and thus give us hints
to places that need to be adapted. The methods available on each of the Path types take
the type of the Path into account (e.g., the like(…) method makes sense only on
String properties and thus is provided only on those).

Because predicate definitions are so concise, they can easily be used inside a method
declaration. On the other hand, we can easily define predicates in a reusable manner,
building up atomic predicates and combining them with more complex ones by using
concatenating operators like And and Or (see Example 3-4).

Example 3-4. Concatenating atomic predicates

QCustomer customer = QCustomer.customer;

BooleanExpression idIsNull = customer.id.isNull();

EmailAddress reference = new EmailAddress("dave@dmband.com");
BooleanExpression isDavesEmail = customer.emailAddress.eq(reference);

BooleanExpression idIsNullOrIsDavesEmail = idIsNull.or(isDavesEmail);

We can use our newly written predicates to define a query for either a particular store
or plain collections. As the support for store-specific query execution is mainly achieved
through the Spring Data repository abstraction, have a look at “Integration with Spring
Data Repositories” on page 32. We’ll use the feature to query collections as an ex-
ample now to keep things simple. First, we set up a variety of Products to have some-
thing we can filter, as shown in Example 3-5.

Example 3-5. Setting up Products

Product macBook = new Product("MacBook Pro", "Apple laptop");
Product iPad = new Product("iPad", "Apple tablet");
Product iPod = new Product("iPod", "Apple MP3 player");
Product turntable = new Product("Turntable", "Vinyl player");

List<Product> products = Arrays.asList(macBook, iPad, iPod, turntable);

Next, we can use the Querydsl API to actually set up a query against the collection,
which is some kind of filter on it (Example 3-6).

Example 3-6. Filtering Products using Querydsl predicates

QProduct $ = QProduct.product;
List<Product> result = from($, products).where($.description.contains("Apple")).list($);

Introduction to Querydsl | 29

assertThat(result, hasSize(3));
assertThat(result, hasItems(macBook, iPad, iPod));

We’re setting up a Querydsl Query using the from(…) method, which is a static method
on the MiniAPI class of the querydsl-collections module. We hand it an instance of the
query class for Product as well as the source collection. We can now use the where(…)
method to apply predicates to the source list and execute the query using one of the
list(…) methods (Example 3-7). In our case, we’d simply like to get back the Product
instances matching the defined predicate. Handing $.description into the list(…)
method would allow us to project the result onto the product’s description and thus
get back a collection of Strings.

Example 3-7. Filtering Products using Querydsl predicates (projecting)

QProduct $ = QProduct.product;
BooleanExpression descriptionContainsApple = $.description.contains("Apple");
List<String> result = from($, products).where(descriptionContainsApple).list($.name);

assertThat(result, hasSize(3));
assertThat(result, hasItems("MacBook Pro", "iPad", "iPod"));

As we have discovered, Querydsl allows us to define entity predicates in a concise and
easy way. These can be generated from the mapping information for a variety of stores
as well as for plain Java classes. Querydsl’s API and its support for various stores allows
us to generate predicates to define queries. Plain Java collections can be filtered with
the very same API.

Generating the Query Metamodel
As we’ve just seen, the core artifacts with Querydsl are the query metamodel classes.
These classes are generated via the Annotation Processing Toolkit, part of the javac
Java compiler in Java 6. The APT provides an API to programmatically inspect existing
Java source code for certain annotations, and then call functions that in turn generate
Java code. Querydsl uses this mechanism to provide special APT processor implemen-
tation classes that inspect annotations. Example 3-1 used Querydsl-specific annota-
tions like @QueryEntity and @QueryEmbeddable. If we already have domain classes
mapped to a store supported by Querydsl, then generating the metamodel classes will
require no extra effort. The core integration point here is the annotation processor you
hand to the Querydsl APT. The processors are usually executed as a build step.

Build System Integration
To integrate with Maven, Querydsl provides the maven-apt-plugin, with which you can
configure the actual processor class to be used. In Example 3-8, we bind the process
goal to the generate-sources phase, which will cause the configured processor class to

30 | Chapter 3: Type-Safe Querying Using Querydsl

http://www.jcp.org/en/jsr/detail?id=175

inspect classes in the src/main/java folder. To generate metamodel classes for classes
in the test sources (src/test/java), add an execution of the test-process goal to the
generate-test-sources phase.

Example 3-8. Setting up the Maven APT plug-in

<project …>
 <build>
 <plugins>
 <plugin>
 <groupId>com.mysema.maven</groupId>
 <artifactId>maven-apt-plugin</artifactId>
 <version>1.0.2</version>
 <executions>
 <execution>
 <goals>
 <goal>process</goal>
 </goals>
 <phase>generate-sources</phase>
 <configuration>
 <outputDirectory>target/generated-sources/java</outputDirectory>
 <processor><!-- fully-qualified processor class name --></processor>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Supported Annotation Processors
Querydsl ships with a variety of APT processors to inspect different sets of annotations
and generate the metamodel classes accordingly.

QuerydslAnnotationProcessor
The very core annotation processor inspects Querydsl-specific annotations like
@QueryEntity and @QueryEmbeddable.

JPAAnnotationProcessor
Inspects javax.persistence annotations, such as @Entity and @Embeddable.

HibernateAnnotationProcessor
Similar to the JPA processor but adds support for Hibernate-specific annotations.

JDOAnnotationProcessor
Inspects JDO annotations, such as @PersistenceCapable and @EmbeddedOnly.

MongoAnnotationProcessor
A Spring Data–specific processor inspecting the @Document annotation. Read more
on this in “The Mapping Subsystem” on page 83.

Generating the Query Metamodel | 31

Querying Stores Using Querydsl
Now that we have the query classes in place, let’s have a look at how we can use them
to actually build queries for a particular store. As already mentioned, Querydsl provides
integration modules for a variety of stores that offer a nice and consistent API to create
query objects, apply predicates defined via the generated query metamodel classes, and
eventually execute the queries.

The JPA module, for example, provides a JPAQuery implementation class that takes an
EntityManager and provides an API to apply predicates before execution; see Exam-
ple 3-9.

Example 3-9. Using Querydsl JPA module to query a relational store

EntityManager entityManager = … // obtain EntityManager
JPAQuery query = new JPAQuery(entityManager);

QProduct $ = QProduct.product;
List<Product> result = query.from($).where($.description.contains("Apple")).list($);

assertThat(result, hasSize(3));
assertThat(result, hasItems(macBook, iPad, iPod));

If you remember Example 3-6, this code snippet doesn’t look very different. In fact, the
only difference here is that we use the JPAQuery as the base, whereas the former example
used the collection wrapper. So you probably won’t be too surprised to see that there’s
not much difference in implementing this scenario for a MongoDB store (Exam-
ple 3-10).

Example 3-10. Using Querydsl MongoDB module with Spring Data MongoDB

MongoOperations operations = … // obtain MongoOperations
MongodbQuery query = new SpringDataMongodbQuery(operations, Product.class);

QProduct $ = QProduct.product;
List<Product> result = query.where($.description.contains("Apple").list();

assertThat(result, hasSize(3));
assertThat(result, hasItems(macBook, iPad, iPod));

Integration with Spring Data Repositories
As you just saw, the execution of queries with Querydsl generally consists of three major
steps:

1. Setting up a store-specific query instance

2. Applying a set of filter predicates to it

3. Executing the query instance, potentially applying projections to it

32 | Chapter 3: Type-Safe Querying Using Querydsl

Two of these steps can be considered boilerplate, as they will usually result in very
similar code being written. On the other hand, the Spring Data repository tries to help
users reduce the amount of unnecessary code; thus, it makes sense to integrate the
repository extraction with Querydsl.

Executing Predicates
The core of the integration is the QueryDslPredicateExecutor interface ,which specifies
the API that clients can use to execute Querydsl predicates in the flavor of the CRUD
methods provided through CrudRepository. See Example 3-11.

Example 3-11. The QueryDslPredicateExecutor interface

public interface QueryDslPredicateExecutor<T> {

 T findOne(Predicate predicate);

 Iterable<T> findAll(Predicate predicate);
 Iterable<T> findAll(Predicate predicate, OrderSpecifier<?>... orders);

 Page<T> findAll(Predicate predicate, Pageable pageable);
 long count(Predicate predicate);
}

Currently, Spring Data JPA and MongoDB support this API by providing implemen-
tation classes implementing the QueryDslPredicateExecutor interface shown in Exam-
ple 3-11. To expose this API through your repository interfaces, let it extend QueryDsl
PredicateExecutor in addition to Repository or any of the other available base interfaces
(see Example 3-12).

Example 3-12. The CustomerRepository interface extending QueryDslPredicateExecutor

public interface CustomerRepository extends Repository<Customer, Long>,
 QueryDslPredicateExecutor<Customer> {
 …
}

Extending the interface will have two important results: the first—and probably most
obvious—is that it pulls in the API and thus exposes it to clients of CustomerReposi
tory. Second, the Spring Data repository infrastructure will inspect each repository
interface found to determine whether it extends QueryDslPredicateExecutor. If it does
and Querydsl is present on the classpath, Spring Data will select a special base class to
back the repository proxy that generically implements the API methods by creating a
store-specific query instance, bind the given predicates, potentially apply pagination,
and eventually execute the query.

Integration with Spring Data Repositories | 33

Manually Implementing Repositories
The approach we have just seen solves the problem of generically executing queries for
the domain class managed by the repository. However, you cannot execute updates or
deletes through this mechanism or manipulate the store-specific query instance. This
is actually a scenario that plays nicely into the feature of repository abstraction, which
allows you to selectively implement methods that need hand-crafted code (see “Man-
ually Implementing Repository Methods” on page 21 for general details on that topic).
To ease the implementation of a custom repository extension, we provide store-specific
base classes. For details on that, check out the sections “Repository Querydsl Integra-
tion” on page 51 and “Mongo Querydsl Integration” on page 99.

34 | Chapter 3: Type-Safe Querying Using Querydsl

PART II

Relational Databases

CHAPTER 4

JPA Repositories

The Java Persistence API (JPA) is the standard way of persisting Java objects into rela-
tional databases. The JPA consists of two parts: a mapping subsystem to map classes
onto relational tables as well as an EntityManager API to access the objects, define and
execute queries, and more. JPA abstracts a variety of implementations such as Hiber-
nate, EclipseLink, OpenJpa, and others. The Spring Framework has always offered
sophisticated support for JPA to ease repository implementations. The support consists
of helper classes to set up an EntityManagerFactory, integrate with the Spring transac-
tion abstraction, and translate JPA-specific exceptions into Spring’s DataAccessExcep
tion hierarchy.

The Spring Data JPA module implements the Spring Data Commons repository ab-
straction to ease the repository implementations even more, making a manual imple-
mentation of a repository obsolete in most cases. For a general introduction to the
repository abstraction, see Chapter 2. This chapter will take you on a guided tour
through the general setup and features of the module.

The Sample Project
Our sample project for this chapter consists of three packages: the com.oreilly.spring-
data.jpa base package plus a core and an order subpackage. The base package contains
a Spring JavaConfig class to configure the Spring container using a plain Java class
instead of XML. The two other packages contain our domain classes and repository
interfaces. As the name suggests, the core package contains the very basic abstractions
of the domain model: technical helper classes like AbstractEntity, but also domain
concepts like an EmailAddress, an Address, a Customer, and a Product. Next, we have
the orders package, which implements actual order concepts built on top of the foun-
dational ones. So we’ll find the Order and its LineItems here. We will have a closer look
at each of these classes in the following paragraphs, outlining their purpose and the
way they are mapped onto the database using JPA mapping annotations.

37

http://www.hibernate.org
http://www.hibernate.org
http://www.eclipse.org/eclipselink
http://openjpa.apache.org

The very core base class of all entities in our domain model is AbstractEntity (see
Example 4-1). It’s annotated with @MappedSuperclass to express that it is not a managed
entity class on its own but rather will be extended by entity classes. We declare an id
of type Long here and instruct the persistence provider to automatically select the most
appropriate strategy for autogeneration of primary keys. Beyond that, we implement
equals(…) and hashCode() by inspecting the id property so that entity classes of the
same type with the same id are considered equal. This class contains the main technical
artifacts to persist an entity so that we can concentrate on the actual domain properties
in the concrete entity classes.

Example 4-1. The AbstractEntity class

@MappedSuperclass
public class AbstractEntity {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;

 @Override
 public boolean equals(Object obj) { … }

 @Override
 public int hashCode() { … }
}

Let’s proceed with the very simple Address domain class. As Example 5-2 shows, it is
a plain @Entity annotated class and simply consists of three String properties. Because
they’re all basic ones, no additional annotations are needed, and the persistence pro-
vider will automatically map them into table columns. If there were demand to cus-
tomize the names of the columns to which the properties would be persisted, you could
use the @Column annotation.

Example 4-2. The Address domain class

@Entity
public class Address extends AbstractEntity {

 private String street, city, country;
}

The Addresses are referred to by the Customer entity. Customer contains quite a few other
properties (e.g., the primitive ones firstname and lastname). They are mapped just like
the properties of Address that we have just seen. Every Customer also has an email ad-
dress represented through the EmailAddress class (see Example 4-3).

Example 4-3. The EmailAddress domain class

@Embeddable
public class EmailAddress {

38 | Chapter 4: JPA Repositories

 private static final String EMAIL_REGEX = …;
 private static final Pattern PATTERN = Pattern.compile(EMAIL_REGEX);

 @Column(name = "email")
 private String emailAddress;

 public EmailAddress(String emailAddress) {
 Assert.isTrue(isValid(emailAddress), "Invalid email address!");
 this.emailAddress = emailAddress;
 }

 protected EmailAddress() { }

 public boolean isValid(String candidate) {
 return PATTERN.matcher(candidate).matches();
 }
}

This class is a value object, as defined in Eric Evans’s book Domain Driven Design
[Evans03]. Value objects are usually used to express domain concepts that you would
naively implement as a primitive type (a string in this case) but that allow implementing
domain constraints inside the value object. Email addresses have to adhere to a specific
format; otherwise, they are not valid email addresses. So we actually implement the
format check through some regular expression and thus prevent an EmailAddress in-
stance from being instantiated if it’s invalid.

This means that we can be sure to have a valid email address if we deal with an instance
of that type, and we don’t have to have some component validate it for us. In terms of
persistence mapping, the EmailAddress class is an @Embeddable, which will cause the
persistence provider to flatten out all properties of it into the table of the surrounding
class. In our case, it’s just a single column for which we define a custom name: email.

As you can see, we need to provide an empty constructor for the JPA persistence pro-
vider to be able to instantiate EmailAddress objects via reflection (Example 5-4). This
is a significant shortcoming because you effectively cannot make the emailAddress a
final one or assert make sure it is not null. The Spring Data mapping subsystem used
for the NoSQL store implementations does not impose that need onto the developer.
Have a look at “The Mapping Subsystem” on page 83 to see how a stricter imple-
mentation of the value object can be modeled in MongoDB, for example.

Example 4-4. The Customer domain class

@Entity
public class Customer extends AbstractEntity{

 private String firstname, lastname;

 @Column(unique = true)
 private EmailAddress emailAddress;

The Sample Project | 39

http://domaindrivendesign.org/node/135

 @OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
 @JoinColumn(name = "customer_id")
 private Set<Address> addresses;
}

We use the @Column annotation on the email address to make sure a single email address
cannot be used by multiple customers so that we are able to look up customers uniquely
by their email address. Finally we declare the Customer having a set of Addresses. This
property deserves deeper attention, as there are quite a few things we define here.

First, and in general, we use the @OneToMany annotation to specify that one Customer can
have multiple Addresses. Inside this annotation, we set the cascade type to Cascade
Type.ALL and also activate orphan removal for the addresses. This has a few conse-
quences. For example, whenever we initially persist, update, or delete a customer, the
Addresses will be persisted, updated, or deleted as well. Thus, we don’t have to persist
an Address instance up front or take care of removing all Addresses whenever we delete
a Customer; the persistence provider will take care of that. Note that this is not a
database-level cascade but rather a cascade managed by your JPA persistence provider.
Beyond that, setting the orphan removal flag to true will take care of deleting
Addresses from that database if they are removed from the collection.

All this results in the Address life cycle being controlled by the Customer, which makes
the relationship a classical composition. Plus, in domain-driven design (DDD) termi-
nology, the Customer qualifies as aggregate root because it controls persistence opera-
tions and constraints for itself as well as other entities. Finally, we use @JoinColumn with
the addresses property, which causes the persistence provider to add another column
to the table backing the Address object. This additional column will then be used to
refer to the Customer to allow joining the tables. If we had left out the additional anno-
tation, the persistence provider would have created a dedicated join table.

The final piece of our core package is the Product (Example 4-5). Just as with the other
classes discussed, it contains a variety of basic properties, so we don’t need to add
annotations to get them mapped by the persistence provider. We add only the
@Column annotation to define the name and price as mandatory properties. Beyond that,
we add a Map to store additional attributes that might differ from Product to Product.

Example 4-5. The Product domain class

@Entity
public class Product extends AbstractEntity {

 @Column(nullable = false)
 private String name;
 private String description;

 @Column(nullable = false)
 private BigDecimal price;

40 | Chapter 4: JPA Repositories

http://en.wikipedia.org/wiki/Domain-driven_design#Building_blocks_of_DDD

 @ElementCollection
 private Map<String, String> attributes = new HashMap<String, String>();
}

Now we have everything in place to build a basic customer relation management (CRM)
or inventory system. Next, we’re going to add abstractions that allow us to implement
orders for Products held in the system. First, we introduce a LineItem that captures a
reference to a Product alongside the amount of products as well as the price at which
the product was bought. We map the Product property using a @ManyToOne annotation
that will actually be turned into a product_id column in the LineItem table pointing to
the Product (see Example 4-6).

Example 4-6. The LineItem domain class

@Entity
public class LineItem extends AbstractEntity {

 @ManyToOne
 private Product product;

 @Column(nullable = false)
 private BigDecimal price;
 private int amount;
}

The final piece to complete the jigsaw puzzle is the Order entity, which is basically a
pointer to a Customer, a shipping Address, a billing Address, and the LineItems actually
ordered (Example 4-7). The mapping of the line items is the very same as we already
saw with Customer and Address. The Order will automatically cascade persistence op-
erations to the LineItem instances. Thus, we don’t have to manage the persistence life
cycle of the LineItems separately. All other properties are many-to-one relationships to
concepts already introduced. Note that we define a custom table name to be used for
Orders because Order itself is a reserved keyword in most databases; thus, the generated
SQL to create the table as well as all SQL generated for queries and data manipulation
would cause exceptions when executing.

Example 4-7. The Order domain class

@Entity
@Table(name = "Orders")
public class Order extends AbstractEntity {

 @ManyToOne(optional = false)
 private Customer customer;
 @ManyToOne
 private Address billingAddress;

 @ManyToOne(optional = false, cascade = CascadeType.ALL)
 private Address shippingAddress;

The Sample Project | 41

 @OneToMany(cascade = CascadeType.ALL, orphanRemoval = true)
 @JoinColumn(name = "order_id")
 private Set<LineItem>;

 …

 public Order(Customer customer, Address shippingAddress,
 Address billingAddress) {

 Assert.notNull(customer);
 Assert.notNull(shippingAddress);

 this.customer = customer;
 this.shippingAddress = shippingAddress.getCopy();
 this.billingAddress = billingAddress == null ? null :
 billingAddress.getCopy();
 }
}

A final aspect worth noting is that the constructor of the Order class does a defensive
copy of the shipping and billing address. This is to ensure that changes to the
Address instance handed into the method do not propagate into already existing orders.
If we didn’t create the copy, a customer changing her Address data later on would also
change the Address on all of her Orders made to that Address as well.

The Traditional Approach
Before we start, let’s look at how Spring Data helps us implement the data access layer
for our domain model, and discuss how we’d implement the data access layer the tra-
ditional way. You’ll find the sample implementation and client in the sample project
annotated with additional annotations like @Profile (for the implementation) as well
as @ActiveProfile (in the test case). This is because the Spring Data repositories ap-
proach will create an instance for the CustomerRepository, and we’ll have one created
for our manual implementation as well. Thus, we use the Spring profiles mechanism
to bootstrap the traditional implementation for only the single test case. We don’t show
these annotations in the sample code because they would not have actually been used
if you implemented the entire data access layer the traditional way.

To persist the previously shown entities using plain JPA, we now create an interface
and implementation for our repositories, as shown in Example 4-8.

Example 4-8. Repository interface definition for Customers

public interface CustomerRepository {

 Customer save(Customer account);

 Customer findByEmailAddress(EmailAddress emailAddress);
}

42 | Chapter 4: JPA Repositories

So we declare a method save(…) to be able to store accounts, and a query method to
find all accounts that are assigned to a given customer by his email address. Let’s see
what an implementation of this repository would look like if we implemented it on top
of plain JPA (Example 4-9).

Example 4-9. Traditional repository implementation for Customers

@Repository
@Transactional(readOnly = true)
class JpaCustomerRepository implements CustomerRepository {

 @PersistenceContext
 private EntityManager em;

 @Override
 @Transactional
 public Customer save(Customer customer) {

 if (customer.getId() == null) {
 em.persist(customer);
 return customer;
 } else {
 return em.merge(customer);
 }
 }

 @Override
 public Customer findByEmailAddress(EmailAddress emailAddress) {

 TypedQuery<Customer> query = em.createQuery(
 "select c from Customer c where c.emailAddress = :emailAddress", Customer.class);
 query.setParameter("emailAddress", emailAddress);

 return query.getSingleResult();
 }
}

The implementation class uses a JPA EntityManager, which will get injected by the
Spring container due to the JPA @PersistenceContext annotation. The class is annotated
with @Repository to enable exception translation from JPA exceptions to Spring’s Data
AccessException hierarchy. Beyond that, we use @Transactional to make sure the
save(…) operation is running in a transaction and to allow setting the readOnly flag (at
the class level) for findByEmailAddress(…). This helps optimize performance inside the
persistence provider as well as on the database level.

Because we want to free the clients from the decision of whether to call merge(…) or
persist(…) on the EntityManager, we use the id field of the Customer to specify whether
we consider a Customer object as new or not. This logic could, of course, be extracted
into a common repository superclass, as we probably don’t want to repeat this code
for every domain object–specific repository implementation. The query method is quite
straightforward as well: we create a query, bind a parameter, and execute the query to

The Traditional Approach | 43

get a result. It’s almost so straightforward that you could regard the implementation
code as boilerplate. With a little bit of imagination, we can derive an implementation
from the method signature: we expect a single customer, the query is quite close to the
method name, and we simply bind the method parameter to it. So, as you can see,
there’s room for improvement.

Bootstrapping the Sample Code
We now have our application components in place, so let’s get them up and running
inside a Spring container. To do so, we have to do two things: first, we need to configure
the general JPA infrastructure (i.e., a DataSource connecting to a database as well as a
JPA EntityManagerFactory). For the former we will use HSQL, a database that supports
being run in-memory. For the latter we will choose Hibernate as the persistence pro-
vider. You can find the dependency setup in the pom.xml file of the sample project.
Second, we need to set up the Spring container to pick up our repository implementa-
tion and create a bean instance for it. In Example 4-10, you see a Spring JavaConfig
configuration class that will achieve the steps just described.

Example 4-10. Spring JavaConfig configuration

@Configuration
@ComponentScan
@EnableTransactionManagement
class ApplicationConfig {

 @Bean
 public DataSource dataSource() {
 EmbeddedDatabaseBuilder builder = new EmbeddedDatabaseBuilder();
 return builder.setType(EmbeddedDatabaseType.HSQL).build();
 }

 @Bean
 public LocalContainerEntityManagerFactoryBean entityManagerFactory() {

 HibernateJpaVendorAdapter vendorAdapter = new HibernateJpaVendorAdapter();
 vendorAdapter.setDatabase(Database.HSQL);
 vendorAdapter.setGenerateDdl(true);

 LocalContainerEntityManagerFactoryBean factory =
 new LocalContainerEntityManagerFactoryBean();
 factory.setJpaVendorAdapter(vendorAdapter);
 factory.setPackagesToScan(getClass().getPackage().getName());
 factory.setDataSource(dataSource());

 return factory;
 }

 @Bean
 public PlatformTransactionManager transactionManager() {
 JpaTransactionManager txManager = new JpaTransactionManager();
 txManager.setEntityManagerFactory(entityManagerFactory());

44 | Chapter 4: JPA Repositories

 return txManager;
 }
}

The @Configuration annotation declares the class as a Spring JavaConfig configuration
class. The @ComponentScan instructs Spring to scan the package of the ApplicationCon
fig class and all of its subpackages for Spring components (classes annotated with
@Service, @Repository, etc.). @EnableTransactionManagement activates Spring-managed
transactions at methods annotated with @Transactional.

The methods annotated with @Bean now declare the following infrastructure compo-
nents: dataSource() sets up an embedded data source using Spring’s embedded data-
base support. This allows you to easily set up various in-memory databases for testing
purposes with almost no configuration effort. We choose HSQL here (other options
are H2 and Derby). On top of that, we configure an EntityManagerFactory. We use a
new Spring 3.1 feature that allows us to completely abstain from creating a persis-
tence.xml file to declare the entity classes. Instead, we use Spring’s classpath scanning
feature through the packagesToScan property of the LocalContainerEntityManagerFac
toryBean. This will trigger Spring to scan for classes annotated with @Entity and @Map
pedSuperclass and automatically add those to the JPA PersistenceUnit.

The same configuration defined in XML looks something like Example 4-11.

Example 4-11. XML-based Spring configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:jdbc="http://www.springframework.org/schema/jdbc"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx.xsd
 http://www.springframework.org/schema/jdbc
 http://www.springframework.org/schema/jdbc/spring-jdbc.xsd">

 <context:componen-scan base-package="com.oreilly.springdata.jpa" />

 <tx:annotation-driven />

 <bean id="transactionManager" class="org.springframework.orm.jpa.JpaTransactionManager">
 <property name="entityManagerFactory" ref="entityManagerFactory" />
 </bean>

 <bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="packagesToScan" value="com.oreilly.springdata.jpa" />

Bootstrapping the Sample Code | 45

 <property name="jpaVendorAdapter">
 <bean class="org.springframework.orm.jpa.vendor.HibernateJpaVendorAdapter">
 <property name="database" value="HSQL" />
 <property name="generateDdl" value="true" />
 </bean>
 </property>
 </bean>

 <jdbc:embedded-database id="dataSource" type="HSQL" />

</beans>

The <jdbc:embedded-database /> at the very bottom of this example creates the in-
memory Datasource using HSQL. The declaration of the LocalContainerEntityManager
FactoryBean is analogous to the declaration in code we’ve just seen in the JavaConfig
case (Example 4-10). On top of that, we declare the JpaTransactionManager and finally
activate annotation-based transaction configuration and component scanning for our
base package. Note that the XML configuration in Example 4-11 is slightly different
from the one you’ll find in the META-INF/spring/application-context.xml file of the
sample project. This is because the sample code is targeting the Spring Data JPA-based
data access layer implementation, which renders some of the configuration just shown
obsolete.

The sample application class creates an instance of an AnnotationConfigApplication
Context, which takes a Spring JavaConfig configuration class to bootstrap application
components (Example 4-12). This will cause the infrastructure components declared
in our ApplicationConfig configuration class and our annotated repository implemen-
tation to be discovered and instantiated. Thus, we can access a Spring bean of type
CustomerRepository, create a customer, store it, and look it up by its email address.

Example 4-12. Bootstrapping the sample code

@RunWith(SpringJunit4ClassRunner.class)
@ContextConfiguration(classes = ApplicationConfig.class)
class CustomerRepositoryIntegrationTests {

 @Autowired
 CustomerRepository customerRepository;

 @Test
 public void savesAndFindsCustomerByEmailAddress {

 Customer dave = new Customer("Dave", "Matthews");
 dave.setEmailAddress("dave@dmband.com");

 Customer result = repository.save(dave);
 Assert.assertThat(result.getId(), is(nonNullValue()));

 result = repository.findByEmailAddress("dave@dmband.com");
 Assert.assertThat(result, is(dave));
 }
}

46 | Chapter 4: JPA Repositories

Using Spring Data Repositories
To enable the Spring data repositories, we must make the repository interfaces discov-
erable by the Spring Data repository infrastructure. We do so by letting our Customer
Repository extend the Spring Data Repository marker interface. Beyond that, we keep
the declared persistence methods we already have. See Example 4-13.

Example 4-13. Spring Data CustomerRepository interface

public interface CustomerRepository extends Repository<Customer, Long> {

 Customer save(Account account);

 Customer findByEmailAddress(String emailAddress);
}

The save(…) method will be backed by the generic SimpleJpaRepository class that im-
plements all CRUD methods. The query method we declared will be backed by the
generic query derivation mechanism, as described in “Query Derivation” on page 17.
The only thing we now have to add to the Spring configuration is a way to activate the
Spring Data repository infrastructure, which we can do in either XML or JavaConfig.
For the JavaConfig way of configuration, all you need to do is add the @EnableJpaRepo
sitories annotation to your configuration class. We remove the @ComponentScan an-
notation be removed for our sample because we don’t need to look up the manual
implementation anymore. The same applies to @EnableTransactionManagement. The
Spring Data repository infrastructure will automatically take care of the method calls
to repositories taking part in transactions. For more details on transaction configura-
tion, see “Transactionality” on page 50. We’d probably still keep these annotations
around were we building a more complete application. We remove them for now to
prevent giving the impression that they are necessary for the sole data access setup.
Finally, the header of the ApplicationConfig class looks something like Example 4-14.

Example 4-14. Enabling Spring Data repositories using JavaConfig

@Configuration
@EnableJpaRepositories
class ApplicationConfig {

 // … as seen before
}

If you’re using XML configuration, add the repositories XML namespace element of
the JPA namespace, as shown in Example 4-15.

Example 4-15. Activating JPA repositories through the XML namespace

<jpa:repositories base-package="com.acme.repositories" />

Using Spring Data Repositories | 47

To see this working, have a look at CustomerRepositoryIntegrationTest. It basically
uses the Spring configuration set up in AbstractIntegrationTest, gets the CustomerRe
pository wired into the test case, and runs the very same tests we find in JpaCustomer
RepositoryIntegrationTest, only without us having to provide any implementation
class for the repository interface whatsoever. Let’s look at the individual methods de-
clared in the repository and recap what Spring Data JPA is actually doing for each one
of them. See Example 4-16.

Example 4-16. Repository interface definition for Customers

public interface CustomerRepository extends Repository<Customer, Long> {

 Customer findOne(Long);

 Customer save(Customer account);

 Customer findByEmailAddress(EmailAddress emailAddress);
}

The findOne(…) and save(…) methods are actually backed by SimpleJpaRepository,
which is the class of the instance that actually backs the proxy created by the Spring
Data infrastructure. So, solely by matching the method signatures, the calls to these
two methods get routed to the implementation class. If we wanted to expose a more
complete set of CRUD methods, we might simply extend CrudRepository instead of
Repository, as it contains these methods already. Note how we actually prevent
Customer instances from being deleted by not exposing the delete(…) methods that
would have been exposed if we had extended CrudRepository. Find out more about of
the tuning options in “Fine-Tuning Repository Interfaces” on page 20.

The last method to discuss is findByEmailAddress(…), which obviously is not a CRUD
one but rather intended to be executed as a query. As we haven’t manually declared
any, the bootstrapping purpose of Spring Data JPA will inspect the method and try to
derive a query from it. The derivation mechanism (details on that in “Query Deriva-
tion” on page 17) will discover that EmailAddress is a valid property reference for
Customer and eventually create a JPA Criteria API query whose JPQL equivalent is
select c from Customer c where c.emailAddress = ?1. Because the method returns a
single Customer, the query execution expects the query to return at most one resulting
entity. If no Customer is found, we’ll get null; if there’s more than one found, we’ll see
a IncorrectResultSizeDataAccessException.

Let’s continue with the ProductRepository interface (Example 4-17). The first thing you
note is that compared to CustomerRepository, we’re extending CrudRepository first be-
cause we’d like to have the full set of CRUD methods available. The method findByDe
scriptionContaining(…) is clearly a query method. There are several things to note here.
First, we not only reference the description property of the product, but also qualify
the predicate with the Containing keyword. That will eventually lead to the given de-
scription parameter being surrounded by % characters, and the resulting String being

48 | Chapter 4: JPA Repositories

bound via the LIKE operator. Thus, the query is as follows: select p from Product p
where p.description like ?1 with a given description of Apple bound as %Apple%. The
second interesting thing is that we’re using the pagination abstraction to retrieve only
a subset of the products matching the criteria. The lookupProductsByDescription() test
case in ProductRepositoryIntegrationTest shows how that method can be used (Ex-
ample 4-18).

Example 4-17. Repository interface definition for Products

public interface ProductRepository extends CrudRepository<Product, Long> {

 Page<Product> findByDescriptionContaining(String description, Pageable pageable);

 @Query("select p from Product p where p.attributes[?1] = ?2")
 List<Product> findByAttributeAndValue(String attribute, String value);
}

Example 4-18. Test case for ProductRepository findByDescriptionContaining(…)

@Test
public void lookupProductsByDescription() {

 Pageable pageable = new PageRequest(0, 1, Direction.DESC, "name");
 Page<Product> page = repository.findByDescriptionContaining("Apple", pageable);

 assertThat(page.getContent(), hasSize(1));
 assertThat(page, Matchers.<Product> hasItems(named("iPad")));
 assertThat(page.getTotalElements(), is(2L));
 assertThat(page.isFirstPage(), is(true));
 assertThat(page.isLastPage(), is(false));
 assertThat(page.hasNextPage(), is(true));
}

We create a new PageRequest instance to ask for the very first page by specifying a page
size of one with a descending order by the name of the Product. We then simply hand
that Pageable into the method and make sure we’ve got the iPad back, that we’re the
first page, and that there are further pages available. As you can see, the execution of
the paging method retrieves the necessary metadata to find out how many items the
query would have returned if we hadn’t applied pagination. Without Spring Data,
reading that metadata would require manually coding the extra query execution, which
does a count projection based on the actual query. For more detailed information on
pagination with repository methods, see “Pagination and Sorting” on page 18.

The second method in ProductRepository is findByAttributeAndValue(…). We’d essen-
tially like to look up all Products that have a custom attribute with a given value. Because
the attributes are mapped as @ElementCollection (see Example 4-5 for reference), we
unfortunately cannot use the query derivation mechanism to get the query created for
us. To manually define the query to be executed, we use the @Query annotation. This
also comes in handy if the queries get more complex in general. Even if they were
derivable, they’d result in awfully verbose method names.

Using Spring Data Repositories | 49

Finally, let’s have a look at the OrderRepository (Example 4-19), which should already
look remarkably familiar. The query method findByCustomer(…) will trigger query der-
ivation (as shown before) and result in select o from Order o where o.customer = ?
1. The only crucial difference from the other repositories is that we extend PagingAnd
SortingRepository, which in turn extends CrudRepository. PagingAndSortingReposi
tory adds findAll(…) methods that take a Sort and Pageable parameter on top of what
CrudRepository already provides. The main use case here is that we’d like to access all
Orders page by page to avoid loading them all at once.

Example 4-19. Repository interface definition for Orders

public interface OrderRepository extends PagingAndSortingRepository<Order, Long> {

 List<Order> findByCustomer(Customer customer);
}

Transactionality
Some of the CRUD operations that will be executed against the JPA EntityManager
require a transaction to be active. To make using Spring Data Repositories for JPA as
convenient as possible, the implementation class backing CrudRepository and Paging
AndSortingRepository is equipped with @Transactional annotations with a default
configuration to let it take part in Spring transactions automatically, or even trigger
new ones in case none is already active. For a general introduction into Spring trans-
actions, please consult the Spring reference documentation.

In case the repository implementation actually triggers the transaction, it will create a
default one (store-default isolation level, no timeout configured, rollback for runtime
exceptions only) for the save(…) and delete(…) operations and read-only ones for all
find methods including the paged ones. Enabling read-only transactions for reading
methods results in a few optimizations: first, the flag is handed to the underlying JDBC
driver which will—depending on your database vendor—result in optimizations or the
driver even preventing you from accidentally executing modifying queries. Beyond that,
the Spring transaction infrastructure integrates with the life cycle of the EntityMan
ager and can set the FlushMode for it to MANUAL, preventing it from checking each entity
in the persistence context for changes (so-called dirty checking). Especially with a large
set of objects loaded into the persistence context, this can lead to a significant im-
provement in performance.

If you’d like to fine-tune the transaction configuration for some of the CRUD methods
(e.g., to configure a particular timeout), you can do so by redeclaring the desired CRUD
method and adding @Transactional with your setup of choice to the method declara-
tion. This will then take precedence over the default configuration declared in Sim
pleJpaRepository. See Example 4-20.

50 | Chapter 4: JPA Repositories

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/transaction.html

Example 4-20. Reconfiguring transactionality in CustomerRepository interface

public interface CustomerRepository extends Repository<Customer, Long> {

 @Transactional(timeout = 60)
 Customer save(Customer account);
}

This, of course, also works if you use custom repository base interfaces; see “Fine-
Tuning Repository Interfaces” on page 20.

Repository Querydsl Integration
Now that we’ve seen how to add query methods to repository interfaces, let’s look at
how we can use Querydsl to dynamically create predicates for entities and execute
them via the repository abstraction. Chapter 3 provides a general introduction to what
Querydsl actually is and how it works.

To generate the metamodel classes, we have configured the Querydsl Maven plug-in
in our pom.xml file, as shown in Example 4-21.

Example 4-21. Setting up the Querydsl APT processor for JPA

<plugin>
 <groupId>com.mysema.maven</groupId>
 <artifactId>maven-apt-plugin</artifactId>
 <version>1.0.4</version>
 <configuration>
 <processor>com.mysema.query.apt.jpa.JPAAnnotationProcessor</processor>
 </configuration>
 <executions>
 <execution>
 <id>sources</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>process</goal>
 </goals>
 <configuration>
 <outputDirectory>target/generated-sources</outputDirectory>
 </configuration>
 </execution>
 </executions>
</plugin>

The only JPA-specific thing to note here is the usage of the JPAAnnotationProcessor. It
will cause the plug-in to consider JPA mapping annotations to discover entities, rela-
tionships to other entities, embeddables, etc. The generation will be run during the
normal build process and classes generated into a folder under target. Thus, they will
be cleaned up with each clean build, and don’t get checked into the source control
system.

Using Spring Data Repositories | 51

If you’re using Eclipse and add the plug-in to your project setup, you will have to trigger
a Maven project update (right-click on the project and choose Maven→Update
Project…). This will add the configured output directory as an additional source folder
so that the code using the generated classes compiles cleanly.

Once this is in place, you should find the generated query classes QCustomer, QPro
duct, and so on. Let’s explore the capabilities of the generated classes in the context of
the ProductRepository. To be able to execute Querydsl predicates on the repository,
we add the QueryDslPredicateExecutor interface to the list of extended types, as shown
in Example 4-22.

Example 4-22. The ProductRepository interface extending QueryDslPredicateExecutor

public interface ProductRepository extends CrudRepository<Product, Long>,
 QueryDslPredicateExecutor<Product> { … }

This will pull methods like findAll(Predicate predicate) and findOne(Predicate pred
icate) into the API. We now have everything in place, so we can actually start using
the generated classes. Let’s have a look at the QuerydslProductRepositoryIntegration
Test (Example 4-23).

Example 4-23. Using Querydsl predicates to query for Products

QProduct product = QProduct.product;

Product iPad = repository.findOne(product.name.eq("iPad"));
Predicate tablets = product.description.contains("tablet");

Iterable<Product> result = repository.findAll(tablets);
assertThat(result, is(Matchers.<Product> iterableWithSize(1)));
assertThat(result, hasItem(iPad));

First, we obtain a reference to the QProduct metamodel class and keep that inside the
product property. We can now use this to navigate the generated path expressions to
create predicates. We use a product.name.eq("iPad") to query for the Product named
iPad and keep that as a reference. The second predicate we build specifies that we’d
like to look up all products with a description containing tablet. We then go on exe-
cuting the Predicate instance against the repository and assert that we found exactly
the iPad we looked up for reference before.

You see that the definition of the predicates is remarkably readable and concise. The
built predicates can be recombined to construct higher-level predicates and thus allow
for querying flexibility without adding complexity.

52 | Chapter 4: JPA Repositories

CHAPTER 5

Type-Safe JDBC Programming
with Querydsl SQL

Using JDBC is a popular choice for working with a relational database. Most of Spring’s
JDBC support is provided in the spring-jdbc module of the Spring Framework itself. A
good guide for this JDBC support is Just Spring Data Access by Madhusudhan Konda
[Konda12]. The Spring Data JDBC Extensions subproject of the Spring Data project
does, however, provide some additional features that can be quite useful. That’s what
we will cover in this chapter. We will look at some recent developments around type-
safe querying using Querydsl.

In addition to the Querydsl support, the Spring Data JDBC Extensions subproject con-
tains some database-specific support like connection failover, message queuing, and
improved stored procedure support for the Oracle database. These features are limited
to the Oracle database and are not of general interest, so we won’t be covering them in
this book. The Spring Data JDBC Extensions subproject does come with a detailed
reference guide that covers these features if you are interested in exploring them further.

The Sample Project and Setup
We have been using strings to define database queries in our Java programs for a long
time, and as mentioned earlier this can be quite error-prone. Column or table names
can change. We might add a column or change the type of an existing one. We are used
to doing similar refactoring for our Java classes in our Java IDEs, and the IDE will guide
us so we can find any references that need changing, including in comments and con-
figuration files. No such support is available for strings containing complex SQL query
expressions. To avoid this problem, we provide support for a type-safe query alternative
in Querydsl. Many data access technologies integrate well with Querydsl, and Chap-
ter 3 provided some background on it. In this section we will focus on the Querydsl
SQL module and how it integrates with Spring’s JdbcTemplate usage, which should be
familiar to every Spring developer.

53

Before we look at the new JDBC support, however, we need to discuss some general
concerns like database configuration and project build system setup.

The HyperSQL Database
We are using the HyperSQL database version 2.2.8 for our Querydsl examples in this
chapter. One nice feature of HyperSQL is that we can run the database in both server
mode and in-memory. The in-memory option is great for integration tests since starting
and stopping the database can be controlled by the application configuration using
Spring’s EmbeddedDatabaseBuilder, or the <jdbc:embedded-database> tag when using the
spring-jdbc XML namespace. The build scripts download the dependency and start the
in-memory database automatically. To use the database in standalone server mode, we
need to download the distribution and unzip it to a directory on our system. Once that
is done, we can change to the hsqldb directory of the unzipped distribution and start
the database using this command:

java -classpath lib/hsqldb.jar org.hsqldb.server.Server \
 --database.0 file:data/test --dbname.0 test

Running this command starts up the server, which generates some log output and a
message that the server has started. We are also told we can use Ctrl-C to stop the
server. We can now open another command window, and from the same hsqldb
directory we can start up a database client so we can interact with the database (creating
tables and running queries, etc.). For Windows, we need to execute only the runMa-
nagerSwing.bat batch file located in the bin directory. For OS X or Linux, we can run
the following command:

java -classpath lib/hsqldb.jar org.hsqldb.util.DatabaseManagerSwing

This should bring up the login dialog shown in Figure 5-1. We need to change the Type
to HSQL Database Engine Server and add “test” as the name of the database to the
URL so it reads jdbc:hsqldb:hsql://localhost/test. The default user is “sa” with a
blank password. Once connected, we have an active GUI database client.

The SQL Module of Querydsl
The SQL module of Querydsl provides a type-safe option for the Java developer to work
with relational databases. Instead of writing SQL queries and embedding them in
strings in your Java program, Querydsl generates query types based on metadata from
your database tables. You use these generated types to write your queries and perform
CRUD operations against the database without having to resort to providing column
or table names using strings.

The way you generate the query types is a bit different in the SQL module compared
to other Querydsl modules. Instead of relying on annotations, the SQL module relies
on the actual database tables and available JDBC metadata for generating the query

54 | Chapter 5: Type-Safe JDBC Programming with Querydsl SQL

http://hsqldb.org/

types. This means that you need to have the tables created and access to a live database
before you run the query class generation. For this reason, we recommend running this
as a separate step of the build and saving the generated classes as part of the project in
the source control system. We need to rerun this step only when we have made some
changes to our table structures and before we check in our code. We expect the con-
tinuous integration system to run this code generation step as well, so any mismatch
between the Java types and the database tables would be detected at build time.

We’ll take a look at what we need to generate the query types later, but first we need
to understand what they contain and how we use them. They contain information that
Querydsl can use to generate queries, but they also contain information you can use to
compose queries; perform updates, inserts, and deletes; and map data to domain ob-
jects. Let’s take a quick look at an example of a table to hold address information. The
address table has three VARCHAR columns: street, city, and country. Example 5-1 shows
the SQL statement to create this table.

Example 5-1. Creating the address table

CREATE TABLE address (
 id BIGINT IDENTITY PRIMARY KEY,
 customer_id BIGINT CONSTRAINT address_customer_ref
 FOREIGN KEY REFERENCES customer (id),
 street VARCHAR(255),
 city VARCHAR(255),
 country VARCHAR(255));

Figure 5-1. HSQLDB client login dialog

The Sample Project and Setup | 55

Example 5-2 demonstrates the generated query type based on this address table. It has
some constructors, Querydsl path expressions for the columns, methods to create
primary and foreign key types, and a static field that provides an instance of the
QAddress class.

Example 5-2. A generated query type—QAddress

package com.oreilly.springdata.jdbc.domain;

import static com.mysema.query.types.PathMetadataFactory.*;

import com.mysema.query.types.*;
import com.mysema.query.types.path.*;

import javax.annotation.Generated;

/**
 * QAddress is a Querydsl query type for QAddress
 */
@Generated("com.mysema.query.sql.codegen.MetaDataSerializer")
public class QAddress extends com.mysema.query.sql.RelationalPathBase<QAddress> {

 private static final long serialVersionUID = 207732776;

 public static final QAddress address = new QAddress("ADDRESS");

 public final StringPath city = createString("CITY");
 public final StringPath country = createString("COUNTRY");
 public final NumberPath<Long> customerId = createNumber("CUSTOMER_ID", Long.class);
 public final NumberPath<Long> id = createNumber("ID", Long.class);
 public final StringPath street = createString("STREET");
 public final com.mysema.query.sql.PrimaryKey<QAddress> sysPk10055 = createPrimaryKey(id);
 public final com.mysema.query.sql.ForeignKey<QCustomer> addressCustomerRef =
 createForeignKey(customerId, "ID");

 public QAddress(String variable) {
 super(QAddress.class, forVariable(variable), "PUBLIC", "ADDRESS");
 }

 public QAddress(Path<? extends QAddress> entity) {
 super(entity.getType(), entity.getMetadata(), "PUBLIC", "ADDRESS");
 }

 public QAddress(PathMetadata<?> metadata) {
 super(QAddress.class, metadata, "PUBLIC", "ADDRESS");
 }
}

By creating a reference like this:

QAddress qAddress = QAddress.address;

in our Java code, we can reference the table and the columns more easily using
qAddress instead of resorting to using string literals.

56 | Chapter 5: Type-Safe JDBC Programming with Querydsl SQL

In Example 5-3, we query for the street, city, and country for any address that has
London as the city.

Example 5-3. Using the generated query class

QAddress qAddress = QAddress.address;
SQLTemplates dialect = new HSQLDBTemplates();
SQLQuery query = new SQLQueryImpl(connection, dialect)
 .from(qAddress)
 .where(qAddress.city.eq("London"));
List<Address> results = query.list(
 new QBean<Address>(Address.class, qAddress.street,
 qAddress.city, qAddress.country));

First, we create a reference to the query type and an instance of the correct SQLTem
plates for the database we are using, which in our case is HSQLDBTemplates. The SQLTem
plates encapsulate the differences between databases and are similar to Hibernate’s
Dialect. Next, we create an SQLQuery with the JDBC javax.sql.Connection and the
SQLTemplates as the parameters. We specify the table we are querying using the from
method, passing in the query type. Next, we provide the where clause or predicate via
the where method, using the qAddress reference to specify the criteria that city should
equal London.

Executing the SQLQuery, we use the list method, which will return a List of results.
We also provide a mapping implementation using a QBean, parameterized with the
domain type and a projection consisting of the columns street, city, and country.

The result we get back is a List of Addresses, populated by the QBean. The QBean is
similar to Spring’s BeanPropertyRowMapper, and it requires that the domain type follows
the JavaBean style. Alternatively, you can use a MappingProjection, which is similar to
Spring’s familiar RowMapper in that you have more control over how the results are
mapped to the domain object.

Based on this brief example, let’s summarize the components of Querydsl that we used
for our SQL query:

• The SQLQueryImpl class , which will hold the target table or tables along with the
predicate or where clause and possibly a join expression if we are querying multiple
tables

• The Predicate, usually in the form of a BooleanExpression that lets us specify filters
on the results

• The mapping or results extractor, usually in the form of a QBean or MappingProjec
tion parameterized with one or more Expressions as the projection

So far, we haven’t integrated with any Spring features, but the rest of the chapter covers
this integration. This first example is just intended to introduce the basics of the
Querydsl SQL module.

The Sample Project and Setup | 57

Build System Integration
The code for the Querydsl part of this chapter is located in the jdbc module of the
sample GitHub project.

Before we can really start using Querydsl in our project, we need to configure our build
system so that we can generate the query types. Querydsl provides both Maven and
Ant integration, documented in the “Querying SQL” chapter of the Querydsl reference
documentation.

In our Maven pom.xml file, we add the plug-in configuration shown in Example 5-4.

Example 5-4. Setting up code generation Maven plug-in

<plugin>
 <groupId>com.mysema.querydsl</groupId>
 <artifactId>querydsl-maven-plugin</artifactId>
 <version>${querydsl.version}</version>
 <configuration>
 <jdbcDriver>org.hsqldb.jdbc.JDBCDriver</jdbcDriver>
 <jdbcUrl>jdbc:hsqldb:hsql://localhost:9001/test</jdbcUrl>
 <jdbcUser>sa</jdbcUser>
 <schemaPattern>PUBLIC</schemaPattern>
 <packageName>com.oreilly.springdata.jdbc.domain</packageName>
 <targetFolder>${project.basedir}/src/generated/java</targetFolder>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.hsqldb</groupId>
 <artifactId>hsqldb</artifactId>
 <version>2.2.8</version>
 </dependency>
 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>${logback.version}</version>
 </dependency>
 </dependencies>
</plugin>

We will have to execute this plug-in explicitly using the following Maven command:

mvn com.mysema.querydsl:querydsl-maven-plugin:export

You can set the plug-in to execute as part of the generate-sources life cycle phase by
specifying an execution goal. We actually do this in the example project, and we also
use a predefined HSQL database just to avoid forcing you to start up a live database
when you build the example project. For real work, though, you do need to have a
database where you can modify the schema and rerun the Querydsl code generation.

58 | Chapter 5: Type-Safe JDBC Programming with Querydsl SQL

https://github.com/SpringSource/spring-data-book
http://www.querydsl.com/static/querydsl/latest/reference/html/
http://www.querydsl.com/static/querydsl/latest/reference/html/

The Database Schema
Now that we have the build configured, we can generate the query classes, but let’s
first review the database schema that we will be using for this section. We already saw
the address table, and we are now adding a customer table that has a one-to-many
relationship with the address table. We define the schema for our HSQLDB database
as shown in Example 5-5.

Example 5-5. schema.sql

CREATE TABLE customer (
 id BIGINT IDENTITY PRIMARY KEY,
 first_name VARCHAR(255),
 last_name VARCHAR(255),
 email_address VARCHAR(255));

CREATE UNIQUE INDEX ix_customer_email ON CUSTOMER (email_address ASC);

CREATE TABLE address (
 id BIGINT IDENTITY PRIMARY KEY,
 customer_id BIGINT CONSTRAINT address_customer_ref FOREIGN KEY REFERENCES customer (id),
 street VARCHAR(255),
 city VARCHAR(255),
 country VARCHAR(255));

The two tables, customer and address, are linked by a foreign key reference from
address to customer. We also define a unique index on the email_address column of
the address table.

This gives us the domain model implementation shown in Figure 5-2.

Figure 5-2. Domain model implementation used with Querydsl SQL

The Sample Project and Setup | 59

The Domain Implementation of the Sample Project
We have already seen the schema for the database, and now we will take a look at the
corresponding Java domain classes we will be using for our examples. We need a
Customer class plus an Address class to hold the data from our database tables. Both of
these classes extend an AbstractEntity class that, in addition to equals(…) and hash
Code(), has setters and getters for the id, which is a Long:

public class AbstractEntity {

 private Long id;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 @Override
 public boolean equals(Object obj) { … }

 @Override
 public int hashCode() { … }
}

The Customer class has name and email information along with a set of addresses. This
implementation is a traditional JavaBean with getters and setters for all properties:

public class Customer extends AbstractEntity {

 private String firstName;
 private String lastName;
 private EmailAddress emailAddress;
 private Set<Address> addresses = new HashSet<Address>();

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public EmailAddress getEmailAddress() {
 return emailAddress;

60 | Chapter 5: Type-Safe JDBC Programming with Querydsl SQL

 }

 public void setEmailAddress(EmailAddress emailAddress) {
 this.emailAddress = emailAddress;
 }

 public Set<Address> getAddresses() {
 return Collections.unmodifiableSet(addresses);
 }

 public void addAddress(Address address) {
 this.addresses.add(address);
 }

 public void clearAddresses() {
 this.addresses.clear();
 }
}

The email address is stored as a VARCHAR column in the database, but in the Java class
we use an EmailAddress value object type that also provides validation of the email
address using a regular expression. This is the same class that we have seen in the other
chapters:

public class EmailAddress {

 private static final String EMAIL_REGEX = …;
 private static final Pattern PATTERN = Pattern.compile(EMAIL_REGEX);

 private String value;

 protected EmailAddress() {
 }

 public EmailAddress(String emailAddress) {
 Assert.isTrue(isValid(emailAddress), "Invalid email address!");
 this.value = emailAddress;
 }

 public static boolean isValid(String source) {
 return PATTERN.matcher(source).matches();
 }
}

The last domain class is the Address class, again a traditional JavaBean with setters and
getters for the address properties. In addition to the no-argument constructor, we have
a constructor that takes all address properties:

public class Address extends AbstractEntity {
 private String street, city, country;

 public Address() {
 }

The Sample Project and Setup | 61

 public Address(String street, String city, String country) {
 this.street = street;
 this.city = city;
 this.country = country;
 }

 public String getCountry() {
 return country;
 }

 public void setCountry(String country) {
 this.country = country;
 }

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }
}

The preceding three classes make up our domain model and reside in the
com.oreilly.springdata.jdbc.domain package of the JDBC example project. Now we
are ready to look at the interface definition of our CustomerRepository:

public interface CustomerRepository {

 Customer findById(Long id);

 List<Customer> findAll();

 void save(Customer customer);

 void delete(Customer customer);

 Customer findByEmailAddress(EmailAddress emailAddress);
}

We have a couple of finder methods and save and delete methods. We don’t have any
repository methods to save and delete the Address objects since they are always owned
by the Customer instances. We will have to persist any addresses provided when the
Customer instance is saved.

62 | Chapter 5: Type-Safe JDBC Programming with Querydsl SQL

The QueryDslJdbcTemplate
The central class in the Spring Data integration with Querydsl is the QueryDslJdbcTem
plate. It is a wrapper around a standard Spring JdbcTemplate that has methods for
managing SQLQuery instances and executing queries as well as methods for executing
inserts, updates, and deletes using command-specific callbacks. We’ll cover all of these
in this section, but let’s start by creating a QueryDslJdbcTemplate.

To configure the QueryDslJdbcTemplate, you simply pass in either a DataSource:

QueryDslJdbcTemplate qdslTemplate = new QueryDslJdbcTemplate(dataSource);

or an already configured JdbcTemplate in the constructor:

jdbcTemplate jdbcTemplate = new JdbcTemplate(dataSource);
QueryDslJdbcTemplate qdslTemplate = new QueryDslJdbcTemplate(jdbcTemplate);

Now we have a fully configured QueryDslJdbcTemplate to use. We saw earlier that usu-
ally you need to provide a Connection and an SQLTemplates matching your database
when you create an SQLQuery object. However, when you use the QueryDslJdbcTem
plate, there is no need to do this. In usual Spring fashion, the JDBC layer will manage
any database resources like connections and result sets. It will also take care of pro-
viding the SQLTemplates instance based on database metadata from the managed con-
nection. To obtain a managed instance of an SQLQuery, you use the newSqlQuery static
factory method of the QueryDslJdbcTemplate:

SQLQuery sqlQuery = qdslTemplate.newSqlQuery();

The SQLQuery instance obtained does not yet have a live connection, so you need to use
the query methods of the QueryDslJdbcTemplate to allow connection management to
take place:

SQLQuery addressQuery = qdslTemplate.newSqlQuery()
 .from(qAddress)
 .where(qAddress.city.eq("London"));

List<Address> results = qdslTemplate.query(
 addressQuery,
 BeanPropertyRowMapper.newInstance(Address.class),
 qAddress.street, qAddress.city, qAddress.country);

There are two query methods: query returning a List and queryForObject returning a
single result. Both of these have three overloaded versions, each taking the following
parameters:

• SQLQuery object obtained via the newSqlQuery factory method

• One of the following combinations of a mapper and projection implementation:

— RowMapper, plus a projection expressed as one or more Expressions

— ResultSetExtractor, plus a projection expressed as one or more Expressions

— ExpressionBase, usually expressed as a QBean or MappingProjection

The QueryDslJdbcTemplate | 63

The first two mappers, RowMapper and ResultSetExtractor, are standard Spring inter-
faces often used with the regular JdbcTemplate. They are responsible for extracting the
data from the results returned by a query. The ResultSetExtractor extracts data for all
rows returned, while the RowMapper handles only one row at the time and will be called
repeatedly, once for each row. QBean and MappingProjection are Querydsl classes that
also map one row at the time. Which ones you use is entirely up to you; they all work
equally well. For most of our examples, we will be using the Spring types—this book
is called Spring Data, after all.

Executing Queries
Now we will look at how we can use the QueryDslJdbcTemplate to execute queries by
examining how we should implement the query methods of our CustomerRepository.

The Beginning of the Repository Implementation
The implementation will be autowired with a DataSource; in that setter, we will create
a QueryDslJdbcTemplate and a projection for the table columns used by all queries when
retrieving data needed for the Customer instances. (See Example 5-6.)

Example 5-6. Setting up the QueryDslCustomerRepository instance

@Repository
@Transactional
public class QueryDslCustomerRepository implements CustomerRepository {

 private final QCustomer qCustomer = QCustomer.customer;
 private final QAddress qAddress = QAddress.address;

 private final QueryDslJdbcTemplate template;
 private final Path<?>[] customerAddressProjection;

 @Autowired
 public QueryDslCustomerRepository(DataSource dataSource) {

 Assert.notNull(dataSource);

 this.template = new QueryDslJdbcTemplate(dataSource);
 this.customerAddressProjection = new Path<?>[] { qCustomer.id, qCustomer.firstName,
 qCustomer.lastName, qCustomer.emailAddress, qAddress.id, qAddress.customerId,
 qAddress.street, qAddress.city, qAddress.country };
 }

 @Override
 @Transactional(readOnly = true)
 public Customer findById(Long id) { … }

 @Override
 @Transactional(readOnly = true)
 public Customer findByEmailAddress(EmailAddress emailAddress) { … }

64 | Chapter 5: Type-Safe JDBC Programming with Querydsl SQL

 @Override
 public void save(final Customer customer) { … }

 @Override
 public void delete(final Customer customer) { … }
}

We are writing a repository, so we start off with an @Repository annotation. This is a
standard Spring stereotype annotation, and it will make your component discoverable
during classpath scanning. In addition, for repositories that use ORM-style data access
technologies, it will also make your repository a candidate for exception translation
between the ORM-specific exceptions and Spring’s DataAccessException hierarchy. In
our case, we are using a template-based approach, and the template itself will provide
this exception translation.

Next is the @Transactional annotation. This is also a standard Spring annotation that
indicates that any call to a method in this class should be wrapped in a database trans-
action. As long as we provide a transaction manager implementation as part of our
configuration, we don’t need to worry about starting and completing these transactions
in our repository code.

We also define two references to the two query types that we have generated, QCusto
mer and QAddress. The array customerAddressProjection will hold the Querydsl Path
entries for our queries, one Path for each column we are retrieving.

The constructor is annotated with @Autowired, which means that when the repository
implementation is configured, the Spring container will inject the DataSource that has
been defined in the application context. The rest of the class comprises the methods
from the CustomerRepository that we need to provide implementations for, so let’s get
started.

Querying for a Single Object
First, we will implement the findById method (Example 5-7). The ID we are looking
for is passed in as the only argument. Since this is a read-only method, we can add a
@Transactional(readOnly = true) annotation to provide a hint that some JDBC drivers
will use to improve transaction handling. It never hurts to provide this optional attribute
for read-only methods even if some JDBC drivers won’t make use of it.

Example 5-7. Query for single object

@Transactional(readOnly = true)
public Customer findById(Long id) {

 SQLQuery findByIdQuery = template.newSqlQuery()
 .from(qCustomer)
 .leftJoin(qCustomer._addressCustomerRef, qAddress)
 .where(qCustomer.id.eq(id));

Executing Queries | 65

 return template.queryForObject(
 findByIdQuery,
 new CustomerExtractor(),
 customerAddressProjection);
}

We start by creating an SQLQuery instance. We have already mentioned that when we
are using the QueryDslJdbcTemplate, we need to let the template manage the SQLQuery
instances. That’s why we use the factory method newSqlQuery() to obtain an instance.
The SQLQuery class provides a fluent interface where the methods return the instance
of the SQLQuery. This makes it possible to string a number of methods together, which
in turn makes it easier to read the code. We specify the main table we are querying (the
customer table) with the from method. Then we add a left outer join against the
address table using the leftJoin(…) method. This will include any address rows that
match the foreign key reference between address and customer. If there are none, the
address columns will be null in the returned results. If there is more than one address,
we will get multiple rows for each customer, one for each address row. This is something
we will have to handle in our mapping to the Java objects later on. The last part of the
SQLQuery is specifying the predicate using the where method and providing the criteria
that the id column should equal the id parameter.

After we have the SQLQuery created, we execute our query by calling the queryForOb
ject method of the QueryDslJdbcTemplate, passing in the SQLQuery and a combination
of a mapper and a projection. In our case, that is a ResultSetExtractor and the custom
erAddressProjection that we created earlier. Remember that we mentioned earlier that
since our query contained a leftJoin, we needed to handle potential multiple rows per
Customer.

Example 5-8 is the implementation of this CustomerExtractor.

Example 5-8. CustomerExtractor for single object

private static class CustomerExtractor implements ResultSetExtractor<Customer> {

 CustomerListExtractor customerListExtractor =
 new CustomerListExtractor(OneToManyResultSetExtractor.ExpectedResults.ONE_OR_NONE);

 @Override
 public Customer extractData(ResultSet rs) throws SQLException, DataAccessException {

 List<Customer> list = customerListExtractor.extractData(rs);
 return list.size() > 0 ? list.get(0) : null;
 }
}

As you can see, we use a CustomerListExtractor that extracts a List of Customer objects,
and we return the first object in the List if there is one, or null if the List is empty. We
know that there could not be more than one result since we set the parameter expect
edResults to OneToManyResultSetExtractor.ExpectedResults.ONE_OR_NONE in the con-
structor of the CustomerListExtractor.

66 | Chapter 5: Type-Safe JDBC Programming with Querydsl SQL

The OneToManyResultSetExtractor Abstract Class
Before we look at the CustomerListExtractor, let’s look at the base class, which is a
special implementation named OneToManyResultSetExtractor that is provided by the
Spring Data JDBC Extension project. Example 5-9 gives an outline of what the OneTo
ManyResultSetExtractor provides.

Example 5-9. Outline of OneToManyResultSetExtractor for extracting List of objects

public abstract class OneToManyResultSetExtractor<R, C, K>
 implements ResultSetExtractor<List<R>> {

 public enum ExpectedResults {
 ANY,
 ONE_AND_ONLY_ONE,
 ONE_OR_NONE,
 AT_LEAST_ONE
 }

 protected final ExpectedResults expectedResults;
 protected final RowMapper<R> rootMapper;
 protected final RowMapper<C> childMapper;

 protected List<R> results;

 public OneToManyResultSetExtractor(RowMapper<R> rootMapper, RowMapper<C> childMapper) {
 this(rootMapper, childMapper, null);
 }

 public OneToManyResultSetExtractor(RowMapper<R> rootMapper, RowMapper<C> childMapper,
 ExpectedResults expectedResults) {

 Assert.notNull(rootMapper);
 Assert.notNull(childMapper);

 this.rootMapper = rootMapper;
 this.childMapper = childMapper;
 this.expectedResults = expectedResults == null ? ExpectedResults.ANY : expectedResults;
 }

 public List<R> extractData(ResultSet rs) throws SQLException, DataAccessException { … }

 /**
 * Map the primary key value to the required type.
 * This method must be implemented by subclasses.
 * This method should not call {@link ResultSet#next()}
 * It is only supposed to map values of the current row.
 *
 * @param rs the ResultSet
 * @return the primary key value
 * @throws SQLException
 */
 protected abstract K mapPrimaryKey(ResultSet rs) throws SQLException;

Executing Queries | 67

 /**
 * Map the foreign key value to the required type.
 * This method must be implemented by subclasses.
 * This method should not call {@link ResultSet#next()}.
 * It is only supposed to map values of the current row.
 *
 * @param rs the ResultSet
 * @return the foreign key value
 * @throws SQLException
 */
 protected abstract K mapForeignKey(ResultSet rs) throws SQLException;

 /**
 * Add the child object to the root object
 * This method must be implemented by subclasses.
 *
 * @param root the Root object
 * @param child the Child object
 */
 protected abstract void addChild(R root, C child);
}

This OneToManyResultSetExtractor extends the ResultSetExtractor, parameterized
with List<T> as the return type. The method extractData is responsible for iterating
over the ResultSet and extracting row data. The OneToManyResultSetExtractor has three
abstract methods that must be implemented by subclasses mapPrimaryKey, mapForeign
Key, and addChild. These methods are used when iterating over the result set to identify
both the primary key and the foreign key so we can determine when there is a new root,
and to help add the mapped child objects to the root object.

The OneToManyResultSetExtractor class also needs RowMapper implementations to pro-
vide the mapping required for the root and child objects.

The CustomerListExtractor Implementation
Now, let’s move on and look at the actual implementation of the CustomerListExtrac
tor responsible for extracting the results of our customer and address results. See
Example 5-10.

Example 5-10. CustomerListExtractor implementation for extracting List of objects

private static class CustomerListExtractor
 extends OneToManyResultSetExtractor<Customer, Address, Integer> {

 private static final QCustomer qCustomer = QCustomer.customer;

 private final QAddress qAddress = QAddress.address;

 public CustomerListExtractor() {
 super(new CustomerMapper(), new AddressMapper());
 }

68 | Chapter 5: Type-Safe JDBC Programming with Querydsl SQL

 public CustomerListExtractor(ExpectedResults expectedResults) {
 super(new CustomerMapper(), new AddressMapper(), expectedResults);
 }

 @Override
 protected Integer mapPrimaryKey(ResultSet rs) throws SQLException {
 return rs.getInt(qCustomer.id.toString());
 }

 @Override
 protected Integer mapForeignKey(ResultSet rs) throws SQLException {
 String columnName = qAddress.addressCustomerRef.getLocalColumns().get(0).toString();
 if (rs.getObject(columnName) != null) {
 return rs.getInt(columnName);
 } else {
 return null;
 }
 }

 @Override
 protected void addChild(Customer root, Address child) {
 root.addAddress(child);
 }
}

The CustomerListExtractor extends this OneToManyResultSetExtractor, calling the
superconstructor passing in the needed mappers for the Customer class, CustomerMap
per (which is the root of the one-to-many relationship), and the mapper for the
Address class, AddressMapper (which is the child of the same one-to-many relationship).

In addition to these two mappers, we need to provide implementations for the mapPri
maryKey, mapForeignKey, and addChild methods of the abstract OneToManyResultSetEx
tractor class.

Next, we will take a look at the RowMapper implementations we are using.

The Implementations for the RowMappers
The RowMapper implementations we are using are just what you would use with the
regular JdbcTemplate. They implement a method named mapRow with a ResultSet and
the row number as parameters. The only difference with using a QueryDslJdbcTem
plate is that instead of accessing the columns with string literals, you use the query
types to reference the column labels. In the CustomerRepository, we provide a static
method for extracting this label via the toString method of the Path:

private static String columnLabel(Path<?> path) {
 return path.toString();
}

Since we implement the RowMappers as static inner classes, they have access to this pri-
vate static method.

Executing Queries | 69

First, let’s look at the mapper for the Customer object. As you can see in Exam-
ple 5-11, we reference columns specified in the qCustomer reference to the QCustomer
query type.

Example 5-11. Root RowMapper implementation for Customer

private static class CustomerMapper implements RowMapper<Customer> {

 private static final QCustomer qCustomer = QCustomer.customer;

 @Override
 public Customer mapRow(ResultSet rs, int rowNum) throws SQLException {

 Customer c = new Customer();

 c.setId(rs.getLong(columnLabel(qCustomer.id)));
 c.setFirstName(rs.getString(columnLabel(qCustomer.firstName)));
 c.setLastName(rs.getString(columnLabel(qCustomer.lastName)));

 if (rs.getString(columnLabel(qCustomer.emailAddress)) != null) {
 c.setEmailAddress(
 new EmailAddress(rs.getString(columnLabel(qCustomer.emailAddress))));
 }

 return c;
 }
}

Next, we look at the mapper for the Address objects, using a qAddress reference to the
QAddress query type (Example 5-12).

Example 5-12. Child RowMapper implementation for Address

private static class AddressMapper implements RowMapper<Address> {

 private final QAddress qAddress = QAddress.address;

 @Override
 public Address mapRow(ResultSet rs, int rowNum) throws SQLException {

 String street = rs.getString(columnLabel(qAddress.street));
 String city = rs.getString(columnLabel(qAddress.city));
 String country = rs.getString(columnLabel(qAddress.country));

 Address a = new Address(street, city, country);
 a.setId(rs.getLong(columnLabel(qAddress.id)));

 return a;
 }
}

Since the Address class has setters for all properties, we could have used a standard
Spring BeanPropertyRowMapper instead of providing a custom implementation.

70 | Chapter 5: Type-Safe JDBC Programming with Querydsl SQL

Querying for a List of Objects
When it comes to querying for a list of objects, the process is exactly the same as for
querying for a single object except that you now can use the CustomerListExtractor
directly without having to wrap it and get the first object of the List. See Example 5-13.

Example 5-13. Query for list of objects

@Transactional(readOnly = true)
public List<Customer> findAll() {

 SQLQuery allCustomersQuery = template.newSqlQuery()
 .from(qCustomer)
 .leftJoin(qCustomer._addressCustomerRef, qAddress);

 return template.query(
 allCustomersQuery,
 new CustomerListExtractor(),
 customerAddressProjection);
}

We create an SQLQuery using the from(…) and leftJoin(…) methods, but this time we
don’t provide a predicate since we want all customers returned. When we execute this
query, we use the CustomerListExtractor directly and the same customerAddressProjec
tion that we used earlier.

Insert, Update, and Delete Operations
We will finish the CustomerRepository implementation by adding some insert, update,
and delete capabilities in addition to the query features we just discussed. With Quer-
ydsl, data is manipulated via operation-specific clauses like SQLInsertClause, SQLUpda
teClause, and SQLDeleteClause. We will cover how to use them with the QueryDslJdbc
Template in this section.

Inserting with the SQLInsertClause
When you want to insert some data into the database, Querydsl provides the SQLIn
sertClause class. Depending on whether your tables autogenerate the key or you pro-
vide the key explicitly, there are two different execute(…) methods. For the case where
the keys are autogenerated, you would use the executeWithKey(…) method. This method
will return the generated key so you can set that on your domain object. When you
provide the key, you instead use the execute method, which returns the number of
affected rows. The QueryDslJdbcTemplate has two corresponding methods: insertWith
Key(…) and insert(…).

We are using autogenerated keys, so we will be using the insertWithKey(…) method for
our inserts, as shown in Example 5-14. The insertWithKey(…) method takes a reference
to the query type and a callback of type SqlInsertWithKeyCallback parameterized with

Insert, Update, and Delete Operations | 71

the type of the generated key. The SqlInsertWithKeyCallback callback interface has a
single method named doInSqlInsertWithKeyClause(…). This method has the SQLInsert
Clause as its parameter. We need to set the values using this SQLInsertClause and then
call executeWithKey(…). The key that gets returned from this call is the return value of
the doInSqlInsertWithKeyClause.

Example 5-14. Inserting an object

Long generatedKey = qdslTemplate.insertWithKey(qCustomer,
 new SqlInsertWithKeyCallback<Long>() {

 @Override
 public Long doInSqlInsertWithKeyClause(SQLInsertClause insert) throws SQLException {

 EmailAddress emailAddress = customer.getEmailAddress();
 String emailAddressString = emailAddress == null ? null : emailAddress.toString();

 return insert.columns(
 qCustomer.firstName, qCustomer.lastName, qCustomer.emailAddress)
 .values(customer.getFirstName(), customer.getLastName(), emailAddress);
 .executeWithKey(qCustomer.id);
 }
 });

customer.setId(generatedKey);

Updating with the SQLUpdateClause
Performing an update operation is very similar to the insert except that we don’t have
to worry about generated keys. The method on the QueryDslJdbcTemplate is called
update, and it expects a reference to the query type and a callback of type SqlUpdate
Callback. The SqlUpdateCallback has the single method doInSqlUpdateClause(…) with
the SQLUpdateClause as the only parameter. After setting the values for the update and
specifying the where clause, we call execute on the SQLUpdateClause, which returns an
update count. This update count is also the value we need to return from this callback.
See Example 5-15.

Example 5-15. Updating an object

qdslTemplate.update(qCustomer, new SqlUpdateCallback() {

 @Override
 public long doInSqlUpdateClause(SQLUpdateClause update) {

 EmailAddress emailAddress = customer.getEmailAddress();
 String emailAddressString = emailAddress == null ? null : emailAddress.toString();

 return update.where(qCustomer.id.eq(customer.getId()))
 .set(qCustomer.firstName, customer.getFirstName())
 .set(qCustomer.lastName, customer.getLastName())
 .set(qCustomer.emailAddress, emailAddressString)
 .execute();

72 | Chapter 5: Type-Safe JDBC Programming with Querydsl SQL

 }
});

Deleting Rows with the SQLDeleteClause
Deleting is even simpler than updating. The QueryDslJdbcTemplate method you use is
called delete, and it expects a reference to the query type and a callback of type SqlDe
leteCallback. The SqlDeleteCallback has the single method doInSqlDeleteClause with
the SQLDeleteClause as the only parameter. There’s no need to set any values here—
just provide the where clause and call execute. See Example 5-16.

Example 5-16. Deleting an object

qdslTemplate.delete(qCustomer, new SqlDeleteCallback() {

 @Override
 public long doInSqlDeleteClause(SQLDeleteClause delete) {
 return delete.where(qCustomer.id.eq(customer.getId())).execute();
 }
});

Insert, Update, and Delete Operations | 73

PART III

NoSQL

CHAPTER 6

MongoDB: A Document Store

This chapter will introduce you to the Spring Data MongoDB project. We will take a
brief look at MongoDB as a document store and explain you how to set it up and
configure it to be usable with our sample project. A general overview of MongoDB
concepts and the native Java driver API will round off the introduction. After that, we’ll
discuss the Spring Data MongoDB module’s features, the Spring namespace, how we
model the domain and map it to the store, and how to read and write data using the
MongoTemplate, the core store interaction API. The chapter will conclude by discussing
the implementation of a data access layer for our domain using the Spring Data repos-
itory abstraction.

MongoDB in a Nutshell
MongoDB is a document data store. Documents are structured data—basically maps—
that can have primitive values, collection values, or even nested documents as values
for a given key. MongoDB stores these documents in BSON, a binary derivative of
JSON. Thus, a sample document would look something like Example 6-1.

Example 6-1. A sample MongoDB document

{ firstname : "Dave",
 lastname : "Matthews",
 addresses : [{ city : "New York", street : "Broadway" }] }

As you can see, we have primitive String values for firstname and lastname. The
addresses field has an array value that in turn contains a nested address document.
Documents are organized in collections, which are arbitrary containers for a set of
documents. Usually, you will keep documents of the same type inside a single collec-
tion, where type essentially means “similarly structured.” From a Java point of view,
this usually reads as a collection per type (one for Customers, one for Products) or type
hierarchy (a single collection to hold Contacts, which can either be Persons or
Companies).

77

Setting Up MongoDB
To start working with MongoDB, you need to download it from the project’s web-
site. It provides binaries for Windows, OS X, Linux, and Solaris, as well as the sources.
The easiest way to get started is to just grab the binaries and unzip them to a reasonable
folder on your hard disk, as shown in Example 6-2.

Example 6-2. Downloading and unzipping MongoDB distribution

$ cd ~/dev
$ curl http://fastdl.mongodb.org/osx/mongodb-osx-x86_64-2.0.6.tgz > mongo.tgz

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 41.1M 100 41.1M 0 0 704k 0 0:00:59 0:00:59 --:--:-- 667k

$ tar -zxvf mongo.tgz

x mongodb-osx-x86_64-2.0.6/
x mongodb-osx-x86_64-2.0.6/bin/
x mongodb-osx-x86_64-2.0.6/bin/bsondump
x mongodb-osx-x86_64-2.0.6/bin/mongo
x mongodb-osx-x86_64-2.0.6/bin/mongod
x mongodb-osx-x86_64-2.0.6/bin/mongodump
x mongodb-osx-x86_64-2.0.6/bin/mongoexport
x mongodb-osx-x86_64-2.0.6/bin/mongofiles
x mongodb-osx-x86_64-2.0.6/bin/mongoimport
x mongodb-osx-x86_64-2.0.6/bin/mongorestore
x mongodb-osx-x86_64-2.0.6/bin/mongos
x mongodb-osx-x86_64-2.0.6/bin/mongosniff
x mongodb-osx-x86_64-2.0.6/bin/mongostat
x mongodb-osx-x86_64-2.0.6/bin/mongotop
x mongodb-osx-x86_64-2.0.6/GNU-AGPL-3.0
x mongodb-osx-x86_64-2.0.6/README
x mongodb-osx-x86_64-2.0.6/THIRD-PARTY-NOTICES

To bootstrap MongoDB, you need to create a folder to contain the data and then start
the mongod binary, pointing it to the just-created directory (see Example 6-3).

Example 6-3. Preparing and starting MongoDB

$ cd mongodb-osx-x86_64-2.0.6
$ mkdir data
$./bin/mongod --dbpath=data

Mon Jun 18 12:35:00 [initandlisten] MongoDB starting : pid=15216 port=27017 dbpath=data
 64-bit …
Mon Jun 18 12:35:00 [initandlisten] db version v2.0.6, pdfile version 4.5
Mon Jun 18 12:35:00 [initandlisten] git version: e1c0cbc25863f6356aa4e31375add7bb49fb05bc
Mon Jun 18 12:35:00 [initandlisten] build info: Darwin erh2.10gen.cc 9.8.0 Darwin Kernel
 Version 9.8.0: …
Mon Jun 18 12:35:00 [initandlisten] options: { dbpath: "data" }
Mon Jun 18 12:35:00 [initandlisten] journal dir=data/journal
Mon Jun 18 12:35:00 [initandlisten] recover : no journal files present, no recovery needed

78 | Chapter 6: MongoDB: A Document Store

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

Mon Jun 18 12:35:00 [websvr] admin web console waiting for connections on port 28017
Mon Jun 18 12:35:00 [initandlisten] waiting for connections on port 27017

As you can see, MongoDB starts up, uses the given path to store the data, and is now
waiting for connections.

Using the MongoDB Shell
Let’s explore the very basic operations of MongoDB using its shell. Switch to the di-
rectory in which you’ve just unzipped MongoDB and run the shell using the mongo
binary, as shown in Example 6-4.

Example 6-4. Starting the MongoDB shell

$ cd ~/dev/mongodb-osx-x86_64-2.0.6
$./bin/mongo

MongoDB shell version: 2.0.6
connecting to: test
>

The shell will connect to the locally running MongoDB instance. You can now use the
show dbs command to inspect all database, currently available on this instance. In
Example 6-5, we select the local database and issue a show collections command,
which will not reveal anything at this point because our database is still empty.

Example 6-5. Selecting a database and inspecting collections

> show dbs
local (empty)
> use local
switched to db local
> show collections
>

Now let’s add some data to the database. We do so by using the save(…) command of
a collection of our choice and piping the relevant data in JSON format to the function.
In Example 6-6, we add two customers, Dave and Carter.

Example 6-6. Inserting data into MongoDB

> db.customers.save({ firstname : 'Dave', lastname : 'Matthews',
 emailAddress : 'dave@dmband.com' })
> db.customers.save({ firstname : 'Carter', lastname : 'Beauford' })
> db.customers.find()
{ "_id" : ObjectId("4fdf07c29c62ca91dcdfd71c"), "firstname" : "Dave",
 "lastname" : "Matthews", "emailAddress" : "dave@dmband.com" }
{ "_id" : ObjectId("4fdf07da9c62ca91dcdfd71d"), "firstname" : "Carter",
 "lastname" : "Beauford" }

The customers part of the command identifies the collection into which the data will
go. Collections will get created on the fly if they do not yet exist. Note that we’ve added

MongoDB in a Nutshell | 79

Carter without an email address, which shows that the documents can contain different
sets of attributes. MongoDB will not enforce a schema onto you by default. The
find(…) command actually can take a JSON document as input to create queries. To
look up a customer with the email address of dave@dmband.com, the shell interaction
would look something like Example 6-7.

Example 6-7. Looking up data in MongoDB

> db.customers.find({ emailAddress : 'dave@dmband.com' })
{ "_id" : ObjectId("4fdf07c29c62ca91dcdfd71c"), "firstname" : "Dave",
 "lastname" : "Matthews", "emailAddress" : "dave@dmband.com" }

You can find out more about working with the MongoDB shell at the MongoDB home
page. Beyond that, [ChoDir10] is a great resource to dive deeper into the store’s inter-
nals and how to work with it in general.

The MongoDB Java Driver
To access MongoDB from a Java program, you can use the Java driver provided and
maintained by 10gen, the company behind MongoDB. The core abstractions to interact
with a store instance are Mongo, Database, and DBCollection. The Mongo class abstracts
the connection to a MongoDB instance. Its default constructor will reach out to a locally
running instance on subsequent operations. As you can see in Example 6-8, the general
API is pretty straightforward.

Example 6-8. Accessing a MongoDB instance through the Java driver

Mongo mongo = new Mongo();
DB database = mongo.getDb("database");
DBCollection customers = db.getCollection("customers");

This appears to be classical infrastructure code that you’ll probably want to have man-
aged by Spring to some degree, just like you use a DataSource abstraction when access-
ing a relational database. Beyond that, instantiating the Mongo object or working with
the DBCollection subsequently could throw exceptions, but they are MongoDB-specific
and shouldn’t leak into client code. Spring Data MongoDB will provide this basic in-
tegration into Spring through some infrastructure abstractions and a Spring namespace
to ease the setup even more. Read up on this in “Setting Up the Infrastructure Using
the Spring Namespace” on page 81.

The core data abstraction of the driver is the DBObject interface alongside the Basic
DBObject implementation class. It can basically be used like a plain Java Map, as you can
see in Example 6-9.

Example 6-9. Creating a MongoDB document using the Java driver

DBObject address = new BasicDBObject("city", "New York");
address.put("street", "Broadway");

80 | Chapter 6: MongoDB: A Document Store

http://www.mongodb.org/display/DOCS/Tutorial
http://www.mongodb.org/display/DOCS/Tutorial

DBObject addresses = new BasicDBList();
addresses.add(address);

DBObject customer = new BasicDBObject("firstname", "Dave");
customer.put("lastname", "Matthews");
customer.put("addresses", addresses);

First, we set up what will end up as the embedded address document. We wrap it into
a list, set up the basic customer document, and finally set the complex address property
on it. As you can see, this is very low-level interaction with the store’s data structure.
If we wanted to persist Java domain objects, we’d have to map them in and out of
BasicDBObjects manually—for each and every class. We will see how Spring Data
MongoDB helps to improve that situation in a bit. The just-created document can now
be handed to the DBCollection object to be stored, as shown in Example 6-10.

Example 6-10. Persisting the document using the MongoDB Java driver

DBCollection customers = db.getCollection("customers");
customers.insert(customer);

Setting Up the Infrastructure Using the Spring Namespace
The first thing Spring Data MongoDB helps us do is set up the necessary infrastructure
to interact with a MongoDB instance as Spring beans. Using JavaConfig, we can simply
extend the AbstractMongoConfiguration class, which contains a lot of the basic config-
uration for us but we can tweak to our needs by overriding methods. Our configuration
class looks like Example 6-11.

Example 6-11. Setting up MongoDB infrastructure with JavaConfig

@Configuration
@EnableMongoRepositories
class ApplicationConfig extends AbstractMongoConfiguration {

 @Override
 protected String getDatabaseName() {
 return "e-store";
 }

 @Override
 public Mongo mongo() throws Exception {
 Mongo mongo = new Mongo();
 mongo.setWriteConcern(WriteConcern.SAFE);
 return
 }
}

We have to implement two methods to set up the basic MongoDB infrastructure. We
provide a database name and a Mongo instance, which encapsulates the information
about how to connect to the data store. We use the default constructor, which will

Setting Up the Infrastructure Using the Spring Namespace | 81

assume we have a MongoDB instance running on our local machine listening to the
default port, 27017. Right after that, we set the WriteConcern to be used to SAFE. The
WriteConcern defines how long the driver waits for the MongoDB server when doing
write operations. The default setting does not wait at all and doesn’t complain about
network issues or data we’re attempting to write being illegal. Setting the value to
SAFE will cause exceptions to be thrown for network issues and makes the driver wait
for the server to okay the written data. It will also generate complaints about index
constraints being violated, which will come in handy later.

These two configuration options will be combined in a bean definition of a SimpleMon
goDbFactory (see the mongoDbFactory() method of AbstractMongoConfiguration). The
MongoDbFactory is in turn used by a MongoTemplate instance, which is also configured
by the base class. It is the central API to interact with the MongoDB instance, and persist
and retrieve objects from the store. Note that the configuration class you find in the
sample project already contains extended configuration, which will be explained later.

The XML version of the previous configuration looks as follows like Example 6-12.

Example 6-12. Setting up MongoDB infrastructure using XML

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:mongo="http://www.springframework.org/schema/data/mongo"
 xsi:schemaLocation="http://www.springframework.org/schema/data/mongo
 http://www.springframework.org/schema/data/mongo/
 spring-mongo.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <mongo:db-factory id="mongoDbFactory" dbname="e-store" />

 <bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
 <constructor-arg ref="mongoDbFactory" />
 <property name="writeConcern" value="SAFE" />
 </bean>

</beans>

The <db-factory /> element sets up the SimpleMongoDbFactory in a similar way as we
saw in the JavaConfig example. The only difference here is that it also defaults the
Mongo instance to be used to the one we had to configure manually in JavaConfig. We
can customize that setup by manually defining a <mongo:mongo /> element and config-
uring its attributes to the values needed. As we’d like to avoid that here, we set the
WriteConcern to be used on the MongoTemplate directly. This will cause all write opera-
tions invoked through the template to be executed with the configured concern.

82 | Chapter 6: MongoDB: A Document Store

The Mapping Subsystem
To ease persisting objects, Spring Data MongoDB provides a mapping subsystem that
can inspect domain classes for persistence metadata and automatically convert these
objects into MongoDB DBObjects. Let’s have a look at the way our domain model could
be modeled and what metadata is necessary to tweak the object-document mapping to
our needs.

The Domain Model
First, we introduce a base class for all of our top-level documents, as shown in Exam-
ple 6-13. It consists of an id property only and thus removes the need to repeat that
property all over the classes that will end up as documents. The @Id annotation is
optional. By default we consider properties named id or _id the ID field of the docu-
ment. Thus, the annotation comes in handy in case you’d like to use a different name
for the property or simply to express a special purpose for it.

Example 6-13. The AbstractDocument class

public class AbstractDocument {

 @Id
 private BigInteger id;

 …
}

Our id property is of type BigInteger. While we generally support any type to be used
as id, there are a few types that allow special features to be applied to the document.
Generally, the recommended id type to end up in the persistent document is Objec
tID. ObjectIDs are value objects that allow for generating consistently growing ids even
in a cluster environment. Beyond that, they can be autogenerated by MongoDB. Trans-
lating these recommendations into the Java driver world also implies it’s best to have
an id of type ObjectID. Unfortunately, this would create a dependency to the Mongo
Java driver inside your domain objects, which might be something you’d like to avoid.
Because ObjectIDs are 12-byte binary values essentially, they can easily be converted
into either String or BigInteger values. So, if you’re using String, BigInteger, or Objec
tID as id types, you can leverage MongoDB’s id autogeneration feature, which will
automatically convert the id values into ObjectIDs before persisting and back when
reading. If you manually assign String values to your id fields that cannot be converted
into an ObjectID, we will store them as is. All other types used as id will also be stored
this way.

Addresses and email addresses

The Address domain class, shown in Example 6-14, couldn’t be simpler. It’s a plain
wrapper around three final primitive String values. The mapping subsystem will

The Mapping Subsystem | 83

transform objects of this type into a DBObject by using the property names as field keys
and setting the values appropriately, as you can see in Example 6-15.

Example 6-14. The Address domain class

public class Address {

 private final String street, city, country;

 public Address(String street, String city, String country) {

 Assert.hasText(street, "Street must not be null or empty!");
 Assert.hasText(city, "City must not be null or empty!");
 Assert.hasText(country, "Country must not be null or empty!");

 this.street = street;
 this.city = city;
 this.country = country;
 }

 // … additional getters
}

Example 6-15. An Address object’s JSON representation

{ street : "Broadway",
 city : "New York",
 country : "United States" }

As you might have noticed, the Address class uses a complex constructor to prevent an
object from being able to be set up in an invalid state. In combination with the final
fields, this makes up a classic example of a value object that is immutable. An
Address will never be changed, as changing a property forces a new Address instance to
be created. The class does not provide a no-argument constructor, which raises the
question of how the object is being instantiated when the DBObject is read from the
database and has to be turned into an Address instance. Spring Data uses the concept
of a so-called persistence constructor, the constructor being used to instantiate persisted
objects. Your class providing a no-argument constructor (either implicit or explicit) is
the easy scenario. The mapping subsystem will simply use that to instantiate the entity
via reflection. If you have a constructor taking arguments, it will try to match the
parameter names against property names and eagerly pull values from the store repre-
sentation—the DBObject in the case of MongoDB.

Another example of a domain concept embodied through a value object is an EmailAd
dress (Example 6-16). Value objects are an extremely powerful way to encapsulate
business rules in code and make the code more expressive, readable, testable, and
maintainable. For a more in-depth discussion, refer to Dan Bergh-Johnsson’s talk on
this topic, available on InfoQ. If you carried an email address around in a plain
String, you could never be sure whether it had been validated and actually represents
a valid email address. Thus, the plain wrapper class checks the given source value

84 | Chapter 6: MongoDB: A Document Store

http://www.infoq.com/presentations/Value-Objects-Dan-Bergh-Johnsson

against a regular expression and rejects it right away if it doesn’t match the expression.
This way, clients can be sure they’re dealing with a proper email address if they get hold
of an EmailAddress instance.

Example 6-16. The EmailAddress domain class

public class EmailAddress {

 private static final String EMAIL_REGEX = …;
 private static final Pattern PATTERN = Pattern.compile(EMAIL_REGEX);

 @Field("email")
 private final String value;

 public EmailAddress(String emailAddress) {
 Assert.isTrue(isValid(emailAddress), "Invalid email address!");
 this.value = emailAddress;
 }

 public static boolean isValid(String source) {
 return PATTERN.matcher(source).matches();
 }
}

The value property is annotated with @Field, which allows for customizing the way a
property is mapped to a field in a DBObject. In our case, we map the rather generic
value to a more specific email. While we could have simply named the property
email in the first place in our situation, this feature comes in handy in two major sce-
narios. First, say you want to map classes onto existing documents that might have
chosen field keys that you don’t want to let leak into your domain objects. @Field
generally allows decoupling between field keys and property names. Second, in contrast
to the relational model, field keys are repeated for every document, so they can make
up a large part of the document data, especially if the values you store are small. So you
could reduce the space required for keys by defining rather short ones to be used, with
the trade-off of slightly reduced readability of the actual JSON representation.

Now that we’ve set the stage with our basic domain concept implementations, let’s
have a look at the classes that actually will make up our documents.

Customers

The first thing you’ll probably notice about the Customer domain class, shown in Ex-
ample 6-17, is the @Document annotation. It is actually an optional annotation to some
degree. The mapping subsystem would still be able to convert the class into a DBOb
ject if the annotation were missing. So why do we use it here? First, we can configure
the mapping infrastructure to scan for domain classes to be persisted. This will pick up
only classes annotated with @Document. Whenever an object of a type currently un-
known to the mapping subsystem is handed to it, the subsystem automatically and
immediately inspects the class for mapping information, slightly decreasing the per-

The Mapping Subsystem | 85

formance of that very first conversion operation. The second reason to use @Document
is the ability to customize the MongoDB collection in which a domain object is stored.
If the annotation is not present at all or the collection attribute is not configured, the
collection name will be the simple class name with the first letter lowercased. So, for
example, a Customer would go into the customer collection.

The code might look slightly different in the sample project, because
we’re going to tweak the model slightly later to improve the mapping.
We’d like to keep it simple at this point to ease your introduction, so
we will concentrate on general mapping aspects here.

Example 6-17. The Customer domain class

@Document
public class Customer extends AbstractDocument {

 private String firstname, lastname;

 @Field("email")
 private EmailAddress emailAddress;
 private Set<Address> addresses = new HashSet<Address>();

 public Customer(String firstname, String lastname) {

 Assert.hasText(firstname);
 Assert.hasText(lastname);

 this.firstname = firstname;
 this.lastname = lastname;
 }

 // additional methods and accessors
}

The Customer class contains two primitive properties to capture first name and last name
as well as a property of our EmailAddress domain class and a Set of Addresses. The
emailAddress property is annotated with @Field, which (as noted previously) allows us
to customize the key to be used in the MongoDB document.

Note that we don’t actually need any annotations to configure the relationship between
the Customer and EmailAddress and the Addresses. This is mostly driven from the fact
that MongoDB documents can contain complex values (i.e., nested documents). This
has quite severe implications for the class design and the persistence of the objects.
From a design point of view, the Customer becomes an aggregate root, in the domain-
driven design terminology. Addresses and EmailAddresses are never accessed individu-
ally but rather through a Customer instance. We essentially model a tree structure here
that maps nicely onto MongoDB’s document model. This results in the object-to-
document mapping being much less complicated than in an object-relational scenario.
From a persistence point of view, storing the entire Customer alongside its Addresses

86 | Chapter 6: MongoDB: A Document Store

and EmailAddresses becomes a single—and thus atomic—operation. In a relational
world, persisting this object would require an insert for each Address plus one for the
Customer itself (assuming we’d inline the EmailAddress into a column of the table the
Customer ends up in). As the rows in the table are only loosely coupled to each other,
we have to ensure the consistency of the insert by using a transaction mechanism.
Beyond that, the insert operations have to be ordered correctly to satisfy the foreign
key relationships.

However, the document model not only has implications on the writing side of persis-
tence operations, but also on the reading side, which usually makes up even more of
the access operations for data. Because the document is a self-contained entity in a
collection, accessing it does not require reaching out into other collections, documents
or the like. Speaking in relational terms, a document is actually a set of prejoined data.
Especially if applications access data of a particular granularity (which is what is usually
driving the class design to some degree), it hardly makes sense to tear apart the data on
writes and rejoin it on each and every read. A complete customer document would look
something like Example 6-18.

Example 6-18. Customer document

{ firstname : "Dave",
 lastname : "Matthews",
 email : { email : "dave@dmband.com" },
 addresses : [{ street : "Broadway",
 city : "New York",
 country : "United States" }] }

Note that modeling an email address as a value object requires it to be serialized as a
nested object, which essentially duplicates the key and makes the document more
complex than necessary. We’ll leave it as is for now, but we’ll see how to improve it in
“Customizing Conversion” on page 91.

Products

The Product domain class (Example 6-19) again doesn’t contain any huge surprises.
The most interesting part probably is that Maps can be stored natively—once again due
to the nature of the documents. The attributes will be just added as a nested document
with the Map entries being translated into document fields. Note that currently, only
Strings can be used as Map keys.

Example 6-19. The Product domain class

@Document
public class Product extends AbstractDocument {

 private String name, description;
 private BigDecimal price;
 private Map<String, String> attributes = new HashMap<String, String>();

The Mapping Subsystem | 87

 // … additional methods and accessors
}

Orders and line items

Moving to the order subsystem of our application, we should look first at the
LineItem class, shown in Example 6-20.

Example 6-20. The LineItem domain class

public class LineItem extends AbstractDocument {

 @DBRef
 private Product product;
 private BigDecimal price;
 private int amount;

 // … additional methods and accessors
}

First we see two basic properties, price and amount, declared without further mapping
annotations because they translate into document fields natively. The product property,
in contrast, is annotated with @DBRef. This will cause the Product object inside the
LineItem to not be embedded. Instead, there will be a pointer to a document in the
collection that stores Products. This is very close to a foreign key in the world of rela-
tional databases.

Note that when we’re storing a LineItem, the Product instance referenced has to be
saved already—so currently, there’s no cascading of save operations available. When
we’re reading LineItems from the store, the reference to the Product will be resolved
eagerly, causing the referenced document to be read and converted into a Product
instance.

To round things off, the final bit we should have a look at is the Order domain class
(Example 6-21).

Example 6-21. The Order domain class

@Document
public class Order extends AbstractDocument {

 @DBRef
 private Customer customer;
 private Address billingAddress;
 private Address shippingAddress;
 private Set<LineItem> lineItems = new HashSet<LineItem>();

 // – additional methods and parameters
}

Here we essentially find a combination of mappings we have seen so far. The class is
annotated with @Document so it can be discovered and inspected for mapping informa-

88 | Chapter 6: MongoDB: A Document Store

tion during application context startup. The Customer is referenced using an @DBRef, as
we’d rather point to one than embedding it into the document. The Address properties
and the LineItems are embedded as is.

Setting Up the Mapping Infrastructure
As we’ve seen how the domain class is persisted, now let’s have a look at how we actually
set up the mapping infrastructure to work for us. In most cases this is pretty simple,
and some of the components that use the infrastructure (and which we’ll introduce
later) will fall back to reasonable default setups that generally enable the mapping sub-
system to work as just described. However, if you’d like to customize the setup, you’ll
need to tweak the configuration slightly. The two core abstractions that come into play
here are the MongoMappingContext and MappingMongoConverter. The former is actually
responsible for building up the domain class metamodel to avoid reflection lookups
(e.g., to detect the id property or determine the field key on each and every persistence
operation). The latter is actually performing the conversion using the mapping infor-
mation provided by the MappingContext. You can simply use these two abstractions
together to trigger object-to-DBObject-and-back conversion programmatically (see
Example 6-22).

Example 6-22. Using the mapping subsystem programmatically

MongoMappingContext context = new MongoMappingContext();
MongoDbFactory dbFactory = new SimpleMongoDbFactory(new Mongo(), "database");
MappingMongoConverter converter = new MongoMappingContext(dbFactory, context);

Customer customer = new Customer("Dave", "Matthews");
customer.setEmailAddress(new EmailAddress("dave@dmband.com"));
customer.add(new Address("Broadway", "New York", "United States"));

DBObject sink = new BasicDBObject();
converter.write(customer, sink);

System.out.println(sink.toString());

{ firstname : "Dave",
 lastname : "Matthews",
 email : { email : "dave@dmband.com" },
 addresses : [{ street : "Broadway",
 city : "New York",
 country : "United States" }] }

We set up instances of a MongoMappingContext as well as a SimpleMongoDbFactory. The
latter is necessary to potentially load @DBRef annotated documents eagerly. This is not
needed in our case, but we still have to set up the MongoMappingConverter instance
correctly. We then set up a Customer instance as well as a BasicDBObject and invoke the
converter to do its work. After that, the DBObject is populated with the data as expected.

The Mapping Subsystem | 89

Using the Spring namespace

The Spring namespace that ships with Spring Data MongoDB contains a <mongo:map
ping-converter /> element that basically sets up an instance of MappingMongo
Converter as we’ve seen before. It will create a MongoMappingContext internally and ex-
pect a Spring bean named mongoDbFactory in the ApplicationContext. We can tweak
this by using the db-factory-ref attribute of the namespace element. See Example 6-23.

Example 6-23. Setting up a MappingMongoConverter in XML

<mongo:mapping-converter id="mongoConverter"
 base-package="com.oreilly.springdata.mongodb" />

This configuration snippet configures the MappingMongoConverter to be available under
the id mongoConverter in the Spring application context. We point the base-package
attribute to our project’s base package to pick up domain classes and build the persis-
tence metadata at application context startup.

In Spring JavaConfig

To ease the configuration when we’re working with Spring JavaConfig classes, Spring
Data MongoDB ships with a configuration class that declares the necessary infrastruc-
ture components in a default setup and provides callback methods to allow us to tweak
them as necessary. To mimic the setup just shown, our configuration class would have
to look like Example 6-24.

Example 6-24. Basic MongoDB setup with JavaConfig

@Configuration
class ApplicationConfig extends AbstractMongoConfiguration {

 @Override
 protected String getDatabaseName() {
 return "e-store";
 }

 @Override
 public Mongo mongo() throws Exception {

 Mongo mongo = new Mongo();
 mongo.setWriteConcern(WriteConcern.SAFE);
 return mongo;
 }

 @Override
 protected String getMappingBasePackage() {
 return "com.oreilly.springdata.mongodb"
 }
}

The first two methods are required to be implemented by the superclass because it sets
up a SimpleMongoDbFactory to access a MongoDB already. Beyond these necessary

90 | Chapter 6: MongoDB: A Document Store

implementations, we override the getMappingBasePackage() method to indicate that the
mapping subsystem will inspect this package, and all below it, for the classes annotated
with @Document. This is not strictly necessary, as the mapping infrastructure will scan
the package of the configuration class by default. We just list it here to demonstrate
how it could be reconfigured.

Indexing
MongoDB supports indexes just as a relational store does. You can configure the index
programatically or by using a mapping annotation. Because we’re usually going to re-
trieve Customers by their email addresses, we’d like to index on those. Thus, we add the
@Index annotation to the emailAddress property of the Customer class, as shown in
Example 6-25.

Example 6-25. Configuring an index on the emailAddress property of Customer

@Document
public class Customer extends AbstractDocument {

 @Index(unique = true)
 private EmailAddress emailAddress;

 …
}

We’d like to prevent duplicate email addresses in the system, so we set the unique flag
to true. This will cause MongoDB to prevent Customers from being created or updated
with the same email address as another Customer. We can define indexes including
multiple properties by using the @CompoundIndex annotation on the domain class.

Index metadata will be discovered when the class is discovered by the
MappingContext. As the information is stored alongside the collection,
to which the class gets persisted, it will get lost if you drop the collection.
To avoid that, remove all documents from the collection.

You can find an example use case of a domain object being rejected in the CustomerRe
positoryIntegrationTests class of the sample application. Note that we expect a Dupli
cateKeyException to be thrown, as we persist a second customer with the email address
obtained from an already existing one.

Customizing Conversion
The mapping subsystem provides a generic way to convert your Java objects into
MongoDB DBObjects and vice versa. However, you might want to manually implement
a conversion of a given type. For example, you’ve seen previously that the introduction
of a value object to capture email addresses resulted in a nested document that you

The Mapping Subsystem | 91

might want to avoid to keep the document structure simple, especially since we can
simply inline the EmailAddress value into the customer object. To recap the scenario,
Example 6-26 shows where we’d like to start.

Example 6-26. The Customer class and its DBObject representation

@Document
public class Customer extends AbstractDocument {

 private String firstname, lastname;

 @Field("email")
 private EmailAddress emailAddress;

 …
}

{ firstname : "Dave",
 lastname : "Matthews",
 email : { email : "dave@dmband.com" }, … }

What we would actually like to end up with is a simpler document looking something
like Example 6-27.

Example 6-27. The intended document structure of a Customer

{ firstname : "Dave",
 lastname : "Matthews",
 email : "dave@dmband.com", … }

Implementing custom converters

The mapping subsystem allows you to manually implement the object-to-document-
and-back conversion yourself by leveraging the Spring conversion service’s Converter
abstraction. Since we’d like to turn the complex object into a plain String, we essentially
need to implement a writing Converter<EmailAddress, String> as well as one to con-
struct EmailAddress objects from Strings (i.e., a Converter<String, EmailAddress>), as
shown in Example 6-28.

Example 6-28. Custom Converter implementations for EmailAddress

@Component
class EmailAddressToStringConverter implements Converter<EmailAddress, String> {

 public String convert(EmailAddress source) {
 return source == null ? null : source.value;
 }
}

@Component
class StringToEmailAddressConverter implements Converter<String, EmailAddress> {

 public EmailAddress convert(String source) {
 return StringUtils.hasText(source) ? new EmailAddress(source) : null;

92 | Chapter 6: MongoDB: A Document Store

 }
}

Registering custom converters

The just-implemented converters now have to be registered with the mapping subsys-
tem. Both the Spring XML namespace as well as the provided Spring JavaConfig
configuration base class make this very easy. In the XML world, it’s just a matter of
declaring a nested element inside <mongo:mapping-converter /> and activating compo-
nent scanning by setting the base-package attribute. See Example 6-29.

Example 6-29. Registering custom converters with the XML namespace

<mongo:mapping-converter id="mongoConverter" base-package="com.oreilly.springdata.mongodb">
 <mongo:custom-converters base-package="com.oreilly.springdata.mongodb" />
</mongo:mapping-converter>

In the JavaConfig world, the configuration base class provides a callback method for
you to return an instance of CustomConversions. This class is a wrapper around the
Converter instances you hand it, which we can inspect later to configure the Mapping
Context and MongoConverter appropriately, as well as the ConversionService to even-
tually perform the conversions. In Example 6-30, we access the Converter instances by
enabling component scanning and autowiring them into the configuration class to
eventually wrap them into the CustomConversions instance.

Example 6-30. Registering custom converters using Spring JavaConfig

@Configuration
@ComponentScan
class ApplicationConfig extends AbstractMongoConfiguration {

 @Autowired
 private List<Converter<?, ?>> converters;

 @Override
 public CustomConversions customConversions() {
 return new CustomConversions(converters);
 }
}

If we now obtain a MappingMongoConverter from the application context and invoke a
conversion, as demonstrated in Example 6-22, the output would change to that shown
in Example 6-31.

Example 6-31. Document structure with custom converters for EmailAddress applied

{ firstname : "Dave",
 lastname : "Matthews",
 email : "dave@dmband.com", … }

The Mapping Subsystem | 93

MongoTemplate
Now that we have both the general infrastructure in place and understand the way that
object mapping works and can be configured, let’s continue with the API we provide
to interact with the store. As with all the other Spring Data modules, the core of the
API is the MongoOperations interface, backed by a MongoTemplate implementation. Tem-
plate implementations in Spring serve two primary purposes: resource management
and exception translation. This means that MongoTemplate will take care of acquiring a
connection through the configured MongoDbFactory and clean it up properly after the
interaction with the store has ended or an exception has occurred. Exceptions being
thrown by MongoDB will be transparently converted into Spring’s DataAccessExcep
tion hierarchy to prevent the clients from having to know about the persistence tech-
nology being used.

To illustrate the usage of the API, we will look at a repository implementation of the
CustomerRepository interface (Example 6-32). It’s called MongoDbCustomerRepository
and located in the com.oreilly.springdata.mongodb.core package.

Example 6-32. MongoDbCustomerRepository implementation

import static org.springframework.data.mongodb.core.query.Criteria.*;
import static org.springframework.data.mongodb.core.query.Query.*;
…

@Repository
@Profile("mongodb")
class MongoDbCustomerRepository implements CustomerRepository {

 private final MongoOperations operations;

 @Autowired
 public MongoDbCustomerRepository(MongoOperations operations) {
 Assert.notNull(operations);
 this.operations = operations;
 }

 @Override
 public Customer findOne(Long id) {

 Query query = query(where("id").is(id));
 return operations.findOne(query, Customer.class);
 }

 @Override
 public Customer save(Customer customer) {

 operations.save(customer);
 return customer;
 }

 @Override
 public Customer findByEmailAddress(EmailAddress emailAddress) {

94 | Chapter 6: MongoDB: A Document Store

 Query query = query(where("emailAddress").is(emailAddress));
 return operations.findOne(query, Customer.class);
 }
}

As you can see, we have a standard Spring component annotated with @Repository to
make the class discoverable by classpath scanning. We add the @Profile annotation to
make sure it will be activated only if the configured Spring profile is activated. This will
prevent the class from leaking into the default bean setup, which we will use later when
introducing the Spring Data repositories for MongoDB.

The class’s only dependency is MongoOperations; this is the interface of MongoTemplate,
which we have configured in our application context (see application-context.xml or
ApplicationConfig class [Example 6-12]). MongoTemplate provides two categories of
methods to be used:

• General-purpose, high-level methods that enable you to execute commonly needed
operations as one-line statements. This includes basic functions like findOne(…),
findAll(…), save(…), and delete(…); more MongoDB-specific ones like update
First(…), updateMulti(…), and upsert(…); and map-reduce and geospatial opera-
tions like mapReduce(…) and geoNear(…). All these methods automatically apply the
object-to-store mapping discussed in“The Mapping Subsystem” on page 83.

• Low-level, callback-driven methods that allow you to interact with the MongoDB
driver API in the even that the high-level operations don’t suffice for the function-
ality you need. These methods all start with execute and take either a Collection
Callback (providing access to a MongoDb DbCollection), DbCallback (providing
access to a MongoDB DB), or a DocumentCallbackHandler (to process a DBObject
directly).

The simplest example of the usage of the high-level API is the save(…) method of
MongoDbCustomerRepository. We simply use the save(…) method of the MongoOpera
tions interface to hand it the provided Customer. It will in turn convert the domain
object into a MongoDB DBObject and save that using the MongoDB driver API.

The two other methods in the implementation—findOne(…) and findByEmailAd
dress(…)—use the query API provided by Spring Data MongoDB to ease creating quer-
ies to access MongoDB documents. The query(…) method is actually a static factory
method of the Query class statically imported at the very top of the class declaration.
The same applies to the where(…) method, except it’s originating from Criteria. As you
can see, defining a query is remarkably simple. Still, there are a few things to notice here.

In findByEmailAddress(…), we reference the emailAddress property of the Customer class.
Because it has been mapped to the email key by the @Field annotation, the property
reference will be automatically translated into the correct field reference. Also, we hand
the plain EmailAddress object to the criteria to build the equality predicate. It will also
be transformed by the mapping subsystem before the query is actually applied. This

MongoTemplate | 95

includes custom conversions registered for the given type as well. Thus, the DBObject
representing the query will look something like Example 6-33.

Example 6-33. The translated query object for findByEmailAddress(…)

{ "email" : "dave@dmband.com" }

As you can see, the field key was correctly translated to email and the value object
properly inlined due to the custom converter for the EmailAddress class we introduced
in “Implementing custom converters” on page 92.

Mongo Repositories
As just described, the MongoOperations interface provides a decent API to implement a
repository manually. However, we can simplify this process even further using the
Spring Data repository abstraction, introduced in Chapter 2. We’ll walk through the
repository interface declarations of the sample project and see how invocations to
the repository methods get handled.

Infrastructure Setup
We activate the repository mechanism by using either a JavaConfig annotation
(Example 6-34) or an XML namespace element.

Example 6-34. Activating Spring Data MongoDB repositories in JavaConfig

@Configuration
@ComponentScan(basePackageClasses = ApplicationConfig.class)
@EnableMongoRepositories
public class ApplicationConfig extends AbstractMongoConfiguration {

 …
}

In this configuration sample, the @EnableMongoRepositories is the crucial part. It will
set up the repository infrastructure to scan for repository interfaces in the package of
the annotated configuration class by default. We can alter this by configuring either
the basePackage or basePackageClasses attributes of the annotation. The XML equiv-
alent looks very similar, except we have to configure the base package manually (Ex-
ample 6-35).

Example 6-35. Activating Spring Data MongoDB repositories in XML

<mongo:repositories base-package="com.oreilly.springdata.mongodb" />

96 | Chapter 6: MongoDB: A Document Store

Repositories in Detail
For each of the repositories in the sample application, there is a corresponding inte-
gration test that we can run against a local MongoDB instance. These tests interact with
the repository and invoke the methods exposed. With the log level set to DEBUG, you
should be able to follow the actual discovery steps, query execution, etc.

Let’s start with CustomerRepository since it’s the most basic one. It essentially looks
like Example 6-36.

Example 6-36. CustomerRepository interface

public interface CustomerRepository extends Repository<Customer, Long> {

 Customer findOne(Long id);

 Customer save(Customer customer);

 Customer findByEmailAddress(EmailAddress emailAddress);
}

The first two methods are essentially CRUD methods and will be routed into the generic
SimpleMongoRepository, which provides the declared methods. The general mechanism
for that is discussed in Chapter 2. So the really interesting method is findByEmailAd
dress(…). Because we don’t have a manual query defined, the query derivation mech-
anism will kick in, parse the method, and derive a query from it. Since we reference the
emailAddress property, the logical query derived is essentially emailAddress = ?0. Thus,
the infrastructure will create a Query instance using the Spring Data MongoDB query
API. This will in turn translate the property reference into the appropriate field mapping
so that we end up using the query { email : ?0 }. On method invocation, the given
parameters will be bound to the query and executed eventually.

The next repository is PersonRepository, shown in Example 6-37.

Example 6-37. PersonRepository interface

public interface ProductRepository extends CrudRepository<Product, Long> {

 Page<Product> findByDescriptionContaining(String description, Pageable pageable);

 @Query("{ ?0 : ?1 }")
 List<Product> findByAttributes(String key, String value);
}

The first thing to notice is that ProductRepository extends CrudRepository instead of
the plain Repository marker interface. This causes the CRUD methods to be pulled into
our repository definition. Thus, we don’t have to manually declare findOne(…) and
save(…) manually. findByDescriptionContaining(…) once again uses the query deriva-
tion mechanism, just as we have seen in CustomerRepository.findByEmailAddress(…).
The difference from the former method is that this one additionally qualifies the

Mongo Repositories | 97

predicate with the Containing keyword. This will cause the description parameter
handed into the method call to be massaged into a regular expression to match de-
scriptions that contain the given String as a substring.

The second thing worth noting here is the use of the pagination API (introduced in
“Pagination and Sorting” on page 18). Clients can hand in a Pageable to the method to
restrict the results returned to a certain page with a given number and page size, as
shown in Example 6-38. The returned Page then contains the results plus some meta-
information, such as about how many pages there are in total. You can see a sample
usage of the method in PersonRepositoryIntegrationTests: the lookupProductsByDe
scription() method.

Example 6-38. Using the findByDescriptionContaining(…) method

Pageable pageable = new PageRequest(0, 1, Direction.DESC, "name");
Page<Product> page = repository.findByDescriptionContaining("Apple", pageable);

assertThat(page.getContent(), hasSize(1));
assertThat(page, Matchers.<Product> hasItems(named("iPad")));
assertThat(page.isFirstPage(), is(true));
assertThat(page.isLastPage(), is(false));
assertThat(page.hasNextPage(), is(true));

First, we set up a PageRequest to request the first page with a page size of 1, requiring
the results to be sorted in descending order by name. See how the returned page pro-
vides not only the results, but also information on where the returned page is located
in the global set of pages.

The second method (refer back to Example 6-37) declared uses the @Query annotation
to manually define a MongoDB query. This comes in handy if the query derivation
mechanism does not provide the functionality you need for the query, or the query
method’s name is awkwardly long. We set up a general query { ?0 : ?1 } to bind the
first argument of the method to act as key and the second one to act as value. The client
can now use this method the query for Products that have a particular attribute (e.g., a
dock connector plug), as shown in Example 6-39.

Example 6-39. Querying for Products with a dock connector plug

List<Product> products = repository.findByAttributes("attributes.connector", "plug");

assertThat(products, Matchers.<Product> hasItems(named("Dock")));

As expected, the iPod dock is returned from the method call. This way, the business
logic could easily implement Product recommendations based on matching attribute
pairs (connector plug and socket).

Last but not least, let’s have a look at the OrderRepository (Example 6-40). Given that
we already discussed two repository interfaces, the last one shouldn’t come with too
many surprises.

98 | Chapter 6: MongoDB: A Document Store

Example 6-40. OrderRepository interface

public interface OrderRepository extends PagingAndSortingRepository<Order, Long> {

 List<Order> findByCustomer(Customer customer);
}

The query method declared here is just a straightforward one using the query derivation
mechanism. What has changed compared to the previous repository interfaces is the
base interface we extend from. Inheriting from PagingAndSortingRepository not only
exposes CRUD methods, but also methods like findAll(Pageable pageable) allow for
paginating the entire set of Orders in a convenient way. For more information on the
pagination API in general, see “Pagination and Sorting” on page 18.

Mongo Querydsl Integration
Now that we’ve seen how to add query methods to repository interfaces, let’s have a
look at how we can use Querydsl to dynamically create predicates for entities and
execute them via the repository abstraction. Chapter 3 provides a general introduction
to what Querydsl actually is and how it works. If you’ve read “Repository Querydsl
Integration” on page 51, you’ll see how remarkably similar the setup and usage of the
API is, although we query a totally different store.

To generate the metamodel classes, we have configured the Querydsl Maven plug-in
in our pom.xml file, as shown in Example 6-41.

Example 6-41. Setting up the Querydsl APT processor for MongoDB

<plugin>
 <groupId>com.mysema.maven</groupId>
 <artifactId>maven-apt-plugin</artifactId>
 <version>1.0.5</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>process</goal>
 </goals>
 <configuration>
 <outputDirectory>target/generated-sources</outputDirectory>
 <processor>…data.mongodb.repository.support.MongoAnnotationProcessor</processor>
 </configuration>
 </execution>
 </executions>
</plugin>

The only difference from the JPA approach is that we configure a MongoAnnotationPro
cessor. It will configure the APT processor to inspect the annotations provided by the
Spring Data MongoDB mapping subsystem to generate the metamodel correctly. Be-
yond that, we provide integration to let Querydsl consider our mappings—and thus
potentially registered custom converters—when creating the MongoDB queries.

Mongo Repositories | 99

To include the API to execute predicates built with the generated metamodel classes,
we let the ProductRepository additionally extend QueryDslPredicateExecutor (Exam-
ple 6-42).

Example 6-42. The ProductRepository interface extending QueryDslPredicateExecutor

public interface ProductRepository extends CrudRepository<Product, Long>,
 QueryDslPredicateExecutor<Product> { … }

The QuerydslProductRepositoryIntegrationTest now shows how to make use of the
predicates. Again, the code is pretty much a 1:1 copy of the JPA code. We obtain a
reference iPad by executing the product.name.eq("iPad") predicate and use that to ver-
ify the result of the execution of the predicate, looking up products by description, as
shown in Example 6-43.

Example 6-43. Using Querydsl predicates to query for Products

QProduct product = QProduct.product;

Product iPad = repository.findOne(product.name.eq("iPad"));
Predicate tablets = product.description.contains("tablet");

Iterable<Product> result = repository.findAll(tablets);
assertThat(result, is(Matchers.<Product> iterableWithSize(1)));
assertThat(result, hasItem(iPad));

100 | Chapter 6: MongoDB: A Document Store

CHAPTER 7

Neo4j: A Graph Database

Graph Databases
This chapter introduces an interesting kind of NoSQL store: graph databases. Graph
databases are clearly post-relational data stores, because they evolve several database
concepts much further while keeping other attributes. They provide the means of stor-
ing semistructured but highly connected data efficiently and allow us to query and
traverse the linked data at a very high speed.

Graph data consists of nodes connected with directed and labeled relationships. In
property graphs, both nodes and relationships can hold arbitrary key/value pairs.
Graphs form an intricate network of those elements and encourage us to model domain
and real-world data close to the original structure. Unlike relational databases, which
rely on fixed schemas to model data, graph databases are schema-free and put no con-
straints onto the data structure. Relationships can be added and changed easily, because
they are not part of a schema but rather part of the actual data.

We can attribute the high performance of graph databases to the fact that moving the
cost of relating entities (joins) to the insertion time—by materializing the relationships
as first-level citizens of the data structure—allows for constant time traversal from one
entity (node) to another. So, regardless of the dataset size, the time for a given traversal
across the graph is always determined by the number of hops in that traversal, not the
number of nodes and relationships in the graph as a whole. In other database models,
the cost of finding connections between two (or more) entities occurs on each query
instead.

Thanks to this, a single graph can store many different domains, creating interesting
connections between entities from all of them. Secondary access or index structures
can be integrated into the graph to allow special grouping or access paths to a number
of nodes or subgraphs.

Due to the nature of graph databases, they don’t rely on aggregate bounds to manage
atomic operations but instead build on the well-established transactional guarantees
of an ACID (atomicity, consistency, isolation, durability) data store.

101

http://en.wikipedia.org/wiki/Graph_database

Neo4j
Neo4j is the leading implementation of a property graph database. It is written pre-
dominantly in Java and leverages a custom storage format and the facilities of the Java
Transaction Architecture (JTA) to provide XA transactions. The Java API offers an
object-oriented way of working with the nodes and relationships of the graph (show in
the example). Traversals are expressed with a fluent API. Being a graph database, Neo4j
offers a number of graph algorithms like shortest path, Dijkstra, or A* out of the box.

Neo4j integrates a transactional, pluggable indexing subsystem that uses Lucene as the
default. The index is used primarily to locate starting points for traversals. Its second
use is to support unique entity creation. To start using Neo4j’s embedded Java data-
base, add the org.neo4j:neo4j:<version> dependency to your build setup, and you’re
ready to go. Example 7-1 lists the code for creating nodes and relationships with prop-
erties within transactional bounds. It shows how to access and read them later.

Example 7-1. Neo4j Core API Demonstration

GraphDatabaseService gdb = new EmbeddedGraphDatabase("path/to/database");

Transaction tx=gdb.beginTx();
try {
 Node dave = gdb.createNode();
 dave.setProperty("email","dave@dmband.com");
 gdb.index().forNodes("Customer").add

Figure 7-1. Graph database overview

102 | Chapter 7: Neo4j: A Graph Database

http://neo4j.org
http://lucene.apache.org

 (dave,"email",dave.getProperty("email");

 Node iPad = gdb.createNode();
 iPad.setProperty("name","Apple iPad");

 Relationship rel=dave.createRelationshipTo(iPad,Types.RATED);
 rel.setProperty("stars",5);

 tx.success();
} finally {
 tx.finish();
}

// to access the data

Node dave = gdb.index().forNodes("Customer").get("email","david@dmband.com").getSingle();
for (Relationship rating : dave.getRelationships(Direction.OUTGOING, Types.RATED)) {
 aggregate(rating.getEndNode(), rating.getProperty("stars"));
}

With the declarative Cypher query language, Neo4j makes it easier to get started for
everyone who knows SQL from working with relational databases. Developers as well
as operations and business users can run ad-hoc queries on the graph for a variety of
use cases. Cypher draws its inspiration from a variety of sources: SQL, SparQL, ASCII-
Art, and functional programming. The core concept is that the user describes the pat-
terns to be matched in the graph and supplies starting points. The database engine then
efficiently matches the given patterns across the graph, enabling users to define so-
phisticated queries like “find me all the customers who have friends who have recently
bought similar products.” Like other query languages, it supports filtering, grouping,
and paging. Cypher allows easy creation, deletion, update, and graph construction.

The Cypher statement in Example 7-2 shows a typical use case. It starts by looking up
a customer from an index and then following relationships via his orders to the products
he ordered. Filtering out older orders, the query then calculates the top 20 largest vol-
umes he purchased by product.

Example 7-2. Sample Cypher statement

START customer=node:Customer(email = "dave@dmband.com")
MATCH customer-[:ORDERED]->order-[item:LINEITEM]->product
WHERE order.date > 20120101
RETURN product.name, sum(item.amount) AS product
ORDER BY products DESC
LIMIT 20

Being written in Java, Neo4j is easily embeddable in any Java application which refers
to single-instance deployments. However, many deployments of Neo4j use the stand-
alone Neo4j server, which offers a convenient HTTP API for easy interaction as well as
a comprehensive web interface for administration, exploration, visualization, and
monitoring purposes. The Neo4j server is a simple download, and can be uncom-
pressed and started directly.

Neo4j | 103

http://docs.neo4j.org/chunked/milestone/server-installation.html

It is possible to run the Neo4j server on top of an embedded database, which allows
easy access to the web interface for inspection and monitoring (Figure 7-2).

Figure 7-2. Neo4j server web interface

In the web interface, you can see statistics about your database. In the data browser,
you can find nodes by ID, with index lookups, and with cypher queries (click the little
blue question mark for syntax help), and switch to the graph visualizer with the right-
hand button to explore your graph visually (as shown in Figure 7-2). The console allows
you to enter Cypher statements directly or even issue HTTP requests. Server Info lists
JMX beans, which, especially in the Enterprise edition, come with much more infor-
mation.

As an open source product, Neo4j has a very rich and active ecosystem of contributors,
community members, and users. Neo Technology, the company sponsoring the de-
velopment of Neo4j, makes sure that the open source licensing (GPL) for the commu-
nity edition, as well as the professional support for the enterprise editions, promote the
continuous development of the product.

To access Neo4j, you have a variety of drivers available, most of them being maintained
by the community. There are libraries for many programming languages for both the
embedded and the server deployment mode. Some are maintained by the Neo4j team,
Spring Data Neo4j being one of them.

104 | Chapter 7: Neo4j: A Graph Database

http://docs.neo4j.org/chunked/milestone/server-embedded.html

Spring Data Neo4j Overview
Spring Data Neo4j was the original Spring Data project initiated by Rod Johnson and
Emil Eifrem. It was developed in close collaboration with VMware and Neo Technology
and offers Spring developers an easy and familiar way to interact with Neo4j. It intends
to leverage the well-known annotation-based programming models with a tight inte-
gration in the Spring Framework ecosystem. As part of the Spring Data project, Spring
Data Neo4j integrates both Spring Data Commons repositories (see Chapter 2) as well
as other common infrastructures.

As in JPA, a few annotations on POJO (plain old Java object) entities and their fields
provide the necessary metainformation for Spring Data Neo4j to map Java objects into
graph elements. There are annotations for entities being backed by nodes (@NodeEn
tity) or relationships (@RelationshipEntity). Field annotations declare relationships
to other entities (@RelatedTo), custom conversions, automatic indexing (@Indexed), or
computed/derived values (@Query). Spring Data Neo4j allows us to store the type in-
formation (hierarchy) of the entities for performing advanced operations and type con-
versions. See Example 7-3.

Example 7-3. An annotated domain class

@NodeEntity
public class Customer {
 @GraphId Long id;

 String firstName, lastName;

 @Indexed(unique = true)
 String emailAddress;

 @RelatedTo(type = "ADDRESS")
 Set<Address> addresses = new HashSet<Address>();
}

The core infrastructure of Spring Data Neo4j is the Neo4jTemplate, which offers (similar
to other template implementations) a variety of lower-level functionality that encap-
sulates the Neo4j API to support mapped domain objects. The Spring Data Neo4j
infrastructure and the repository implementation uses the Neo4jTemplate for its oper-
ations. Like the other Spring Data projects, Spring Data Neo4j is configured via two
XML namespace elements—for general setup and repository configuration.

To tailor Neo4j to individual use cases, Spring Data Neo4j supports both the embedded
mode of Neo4j as well as the server deployment, where the latter is accessed via Neo4j’s
Java-REST binding. Two different mapping modes support the custom needs of de-
velopers. In the simple mapping mode, the graph data is copied into domain objects,
being detached from the graph. The more advanced mapping mode leverages AspectJ
to provide a live, connected representation of the graph elements bound to the domain
objects.

Spring Data Neo4j Overview | 105

Modeling the Domain as a Graph
The domain model described in Chapter 1 is already a good fit for a graph database
like Neo4j (see Figure 7-3). To allow some more advanced graph operations, we’re
going to normalize it further and add some additional relationships to enrich the model.

Figure 7-3. Domain model as a graph

The code samples listed here are not complete but contain the necessary information
for understanding the mapping concepts. See the Neo4j project in the sample source-
repository for a more complete picture.

In Example 7-4, the AbstractEntity as a superclass was kept with the same id field
(which got a @GraphId annotation and equals(…) and hashCode() methods, as previously
discussed). Annotating the id is required in the simple mapping mode, as it is the only
way to keep the node or relationship id stored in the entity. Entities can be be loaded
by their id with Neo4jTemplate.findOne(), and a similar method exists in the Graph
Repository.

Example 7-4. Base domain class

public abstract class AbstractEntity {

 @GraphId
 private Long id;
}

The simplest mapped class is just marked with @NodeEntity to make it known to Spring
Data Neo4j’s mapping infrastructure. It can contain any number of primitive fields,
which will be treated as node properties. Primitive types are mapped directly. Types

106 | Chapter 7: Neo4j: A Graph Database

not supported by Neo4j can be converted to equivalent primitive representations by
supplied Spring converters. Converters for Enum and Date fields come with the library.

In Country, both fields are just simple strings, as shown in Example 7-5. The code field
represents a unique “business” key and is marked as @Indexed(unique=true) which
causes the built-in facilities for unique indexes to be used; these are exposed via
Neo4jTemplate.getOrCreateNode(). There are several methods in the Neo4jTemplate to
access the Neo4j indexes; we can find entities by their indexed keys with Neo4jTem
plate.lookup().

Example 7-5. Country as a simple entity

@NodeEntity
public class Country extends AbstractEntity {

 @Indexed(unique=true)
 String code;
 String name;
}

Customers are stored as nodes; their unique key is the emailAddress. Here we meet the
first references to other objects (in this case, Address), which are represented as rela-
tionships in the graph. So fields of single references or collections of references always
cause relationships to be created when updated, or navigated when accessed.

As shown in Example 7-6, reference fields can be annotated with @RelatedTo, to docu-
ment the fact that they are reference fields or set custom attributes like the relationship
type (in this case, "ADDRESS"). If we do not provide the type, it defaults to the field name.
The relationship points by default to the referred object (Direction.OUTGOING), the op-
posite direction can be specified in the annotation; this is especially important for bi-
directional references, which should be mapped to just a single relationship.

Example 7-6. Customer has relationships to his addresses

@NodeEntity
public class Customer extends AbstractEntity {

 private String firstName, lastName;

 @Indexed(unique = true)
 private String emailAddress;

 @RelatedTo(type = "ADDRESS")
 private Set<Address> addresses = new HashSet<Address>();
}

The Address is pretty simple again. Example 7-7 shows how the country reference field
doesn’t have to be annotated—it just uses the field name as the relationship type for
the outgoing relationship. The customers connected to this address are not represented
in the mapping because they are not necessary for our use case.

Modeling the Domain as a Graph | 107

Example 7-7. Address connected to country

@NodeEntity
public class Address extends AbstractEntity {

 private String street, city;
 private Country country;
}

The Product has a unique name and shows the use of a nonprimitive field; the price
will be converted to a primitive representation by Springs’ converter facilities. You can
register your own converters for custom types (e.g., value objects) in your application
context.

The description field will be indexed by an index that allows full-text search. We have
to name the index explicitly, as it uses a different configuration than the default, exact
index. You can then find the products by calling, for instance, neo4jTem
plate.lookup("search","description:Mac*"), which takes a Lucene query string.

To enable interesting graph operations, we added a Tag entity and relate to it from the
Product. These tags can be used to find similar products, provide recommendations,
or analyze buying behavior.

To handle dynamic attributes of an entity (a map of arbitrary key/values), there is a
special support class in Spring Data Neo4j. We decided against handling maps directly
because they come with a lot of additional semantics that don’t fit in the context.
Currently, DynamicProperties are converted into properties of the node with prefixed
names for separation. (See Example 7-8.)

Example 7-8. Tagged product with custom dynamic attributes

@NodeEntity
public class Product extends AbstractEntity {

 @Indexed(unique = true)
 private String name;
 @Indexed(indexType = IndexType.FULLTEXT, indexName = "search")
 private String description;
 private BigDecimal price;

 @RelatedTo
 private Set<Tag> tags = new HashSet<Tag> ();
 private DynamicProperties attributes = new PrefixedDynamicProperties("attributes");
}

The only unusual thing about the Tag is the Object value property. This property is
converted according to the runtime value into a primitive value that can be stored by
Neo4j. The @GraphProperty annotation, as shown in Example 7-9, allows some cus-
tomization of the storage (e.g., the used property name or a specification of the primitive
target type in the graph).

108 | Chapter 7: Neo4j: A Graph Database

Example 7-9. A simple Tag

@NodeEntity
public class Tag extends AbstractEntity {

 @Indexed(unique = true)
 String name;

 @GraphProperty
 Object value;
}

The first @RelationshipEntity we encounter is something new that didn’t exist in the
original domain model but which is nonetheless well known from any website. To allow
for some more interesting graph operations we add a Rating relationship between a
Customer and a Product. This entity is annotated with @RelationshipEntity to mark it
as such. Besides two simple fields holding the rating stars and a comment, we can see
that it contains fields for the actual start and end of the relationship, which are anno-
tated appropriately (Example 7-10).

Example 7-10. A Rating between Customer and Product

@RelationshipEntity(type = "RATED")
public class Rating extends AbstractEntity {
 @StartNode Customer customer;
 @EndNode Product product;
 int stars;
 String comment;
}

Relationship entities can be created as normal POJO classes, supplied with their start
and endpoints, and saved via Neo4jTemplate.save(). In Example 7-11, we show with
the Order how these entities can be retrieved as part of the mapping. In the more in-
depth discussion of graph operations—see “Leverage Similar Interests (Collaborative
Filtering)” on page 121—we’ll see how to leverage those relationships in Cypher quer-
ies with Neo4jTemplate.query or repository finder methods.

The Order is the most connected entity so far; it sits in the middle of our domain. In
Example 7-11, the relationship to the Customer shows the inverse Direction.INCOMING
for a bidirectional reference that shares the same relationship.

The easiest way to model the different types of addresses (shipping and billing) is to
use different relationship types—in this case, we just rely on the different field names.
Please note that a single address object/node can be used in multiple places for example,
as both the shipping and billing address of a single customer, or even across customers
(e.g., for a family). In practice, a graph is often much more normalized than a relational
database, and the removal of duplication actually offers multiple benefits both in terms
of storage and the ability to run more interesting queries.

Modeling the Domain as a Graph | 109

Example 7-11. Order, the centerpiece of the domain

@NodeEntity
public class Order extends AbstractEntity {

 @RelatedTo(type = "ORDERED", direction = Direction.INCOMING)
 private Customer customer;

 @RelatedTo
 private Address billingAddress;

 @RelatedTo
 private Address shippingAddress;

 @Fetch
 @RelatedToVia
 private Set<LineItem> lineItems = new HashSet<LineItem>();
}

The LineItems are not modeled as nodes but rather as relationships between Order and
Product. A LineItem has no identity of its own and just exists as long as both its end-
points exist, which it refers to via its order and product fields. In this model, LineItem
only contains the quantity attribute, but in other use cases, it can also contain different
attributes.

The interesting pieces in Order and LineItem are the @RelatedToVia annotation and
@Fetch, which is discussed shortly. The annotation on the lineItems field is similar to
@RelatedTo in that it applies only to references to relationship entities. It is possible to
specify a custom relationship type or direction. The type would override the one pro-
vided in the @RelationshipEntity (see Example 7-12).

Example 7-12. A LineItem is just a relationship

@RelationshipEntity(type = "ITEMS")
public class LineItem extends AbstractEntity {

 @StartNode private Order order;

 @Fetch
 @EndNode
 private Product product;
 private int amount;
}

This takes us to one important aspect of object-graph mapping: fetch declarations. As
we know from JPA, this can be tricky. For now we’ve kept things simple in Spring Data
Neo4j by not fetching related entities by default.

Because the simple mapping mode needs to copy data out of the graph into objects, it
must be careful about the fetch depth; otherwise you can easily end up with the whole
graph pulled into memory, as graph structures are often cyclic. That’s why the default
strategy is to load related entities only in a shallow way. The @Fetch annotation is used

110 | Chapter 7: Neo4j: A Graph Database

to declare fields to be loaded eagerly and fully. We can load them after the fact by
template.fetch(entity.field). This applies both to single relationships (one-to-one)
and multi-relationship fields (one-to-many).

In the Order, the LineItems are fetched by default, becuse they are important in most
cases when an order is loaded. For the LineItem itself, the Product is eagerly fetched so
it is directly available. Depending on your use case, you would model it differently.

Now that we have created the domain classes, it’s time to store their data in the graph.

Persisting Domain Objects with Spring Data Neo4j
Before we can start storing domain objects in the graph, we should set up the project.
In addition to your usual Spring dependencies, you need either org.springframe
work.data:spring-data-neo4j:2.1.0.RELEASE (for simple mapping) or org.springfra
mework.data:spring-data-neo4j-aspects:2.1.0.RELEASE (for advanced AspectJ-based
mapping (see “Advanced Mapping Mode” on page 123) as a dependency. Neo4j is
pulled in automatically (for simplicity, assuming the embedded Neo4j deployment).

The minimal Spring configuration is a single namespace config that also sets up the
graph database (Example 7-13).

Example 7-13. Spring configuration setup

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:neo4j="http://www.springframework.org/schema/data/neo4j"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/neo4j
 http://www.springframework.org/schema/data/neo4j/spring-neo4j.xsd">

 <neo4j:config storeDirectory="target/graph.db" />
 <neo4j:repositories base-package="com.oreilly.springdata.neo4j" />

</beans>

As shown in Example 7-14, we can also pass a graphDatabaseService instance to
neo4j:config, in order to configure the graph database in terms of caching, memory
usage, or upgrade policies. This even allows you to use an in-memory Impermanent
GraphDatabase for testing.

Example 7-14. Passing a graphDatabaseService to the configuration

<neo4j:config graphDatabaseService="graphDatabaseService" />

<bean id="graphDatabaseService" class="org.neo4j.test.ImpermanentGraphDatabase" />

<!-- or -->

Persisting Domain Objects with Spring Data Neo4j | 111

<bean id="graphDatabaseService" class="org.neo4j.kernel.EmbeddedGraphDatabase"
 destroy-method="shutdown">
 <constructor-arg value="target/graph.db" />
 <constructor-arg> <!-- passing configuration properties -->
 <map>
 <entry key="allow_store_upgrade" value="true" />
 </map>
 </constructor-arg>
</bean>

After defining the domain objects and the setup, we can pretty easily generate the sam-
ple dataset that will be used to illustrate some use cases (see Example 7-15 and Fig-
ure 7-4). Both the domain classes, as well as the dataset generation and integration tests
documenting the use cases, can be found in the GitHub repository for the book (see
“The Sample Code” on page 6 for details). To import the data, we can simply populate
domain classes and use template.save(entity), which either merges the entity with the
existing element in the graph or creates a new one. That depends on mapped IDs and
possibly unique field declarations, which would be used to identify existing entities in
the graph with which we're merging.

Example 7-15. Populating the graph with the sample dataset

Customer dave = template.save(new Customer("Dave", "Matthews", "dave@dmband.com"));
template.save(new Customer("Carter","Beauford","carter@dmband.com"));
template.save(new Customer("Boyd","Tinsley","boyd@dmband.com"));

Country usa = template.save(new Country("US", "United States"));
template.save(new Address("27 Broadway","New York",usa));

Product iPad = template.save(new Product("iPad", "Apple tablet device").withPrice(499));
Product mbp = template.save(new Product("MacBook Pro", "Apple notebook").withPrice(1299));

template.save(new Order(dave).withItem(iPad,2).withItem(mbp,1));

The entities shown here use some convenience methods for construction to provide a
more readable setup (Figure 7-4).

Neo4jTemplate
The Neo4jTemplate is like other Spring templates: a convenience API over a lower-
level one, in this case the Neo4j API. It adds the usual benefits, like transaction handling
and exception translation, but more importantly, automatic mapping from and to do-
main entities. The Neo4jTemplate is used in the other infrastructural parts of Spring
Data Neo4j. Set it up by adding the <neo4j:config/> declaration to your application
context or by creating a new instance, which is passed a Neo4j GraphDatabaseService
(which is available as a Spring bean and can be injected into your code if you want to
access the Neo4j API directly).

112 | Chapter 7: Neo4j: A Graph Database

The operations for creating entities, nodes, and relationships and finding or removing
them by id comprise the basics (save(), getOrCreateNode(), findOne(), getNode(),
getRelationshipsBetween(), etc.). Most of the other mechanisms deal with more ad-
vanced ways to look up interesting things in the graph—by issuing index queries with
lookup, executing Cypher statements with query(), or running a traversal with tra
verse(). The Neo4jTemplate offers methods to convert nodes into entities with load(),
or one entity into a different type with projectTo() (see “Multiple Roles for a Single
Node” on page 119). Lazily loaded entities can be loaded fully via fetch().

You can achieve most of what you want to do with Spring Data Neo4j with the
Neo4jTemplate alone, but the repository support adds a much more convenient way to
perform many operations.

Combining Graph and Repository Power
With all that set up, we can now look into how repositories integrate with Spring Data
Neo4j and how they are used in a “graphy” way.

Spring Data Commons repositories (see Chapter 2) make it easy to keep persistence
access related code (or rather noncode) in one place and allow us to write as little of it
as possible to satisfy the specific use cases. In Spring Data Neo4j, repositories are de-
rived from the GraphRepository<T> base interface, which already combines some of the
usually needed functionality: CRUD operations, and index and traversal functions. The
basic setup for repositories is just another line of the namespace configuration, as
shown in Example 7-16. Each domain class will be bound to an individual, concrete
repository interface (see Example 7-17).

Figure 7-4. Graph of imported domain data

Combining Graph and Repository Power | 113

Example 7-16. Basic repository configuration setup

<neo4j:repositories base-package="com.oreilly.springdata.neo4j" />

Example 7-17. Basic repository interface declaration

import org.springframework.data.neo4j.repository.GraphRepository;

public interface CustomerRepository extends GraphRepository<Customer> {

 Customer findByEmailAddress(String emailAddress);
}

Spring Data Neo4j repositories provide support for @Query-annotated and derived
finder methods, which are projected to Cypher statements. To understand how this
mapping works, you need to be aware of the expressive syntax of Cypher, which is
explained in the next sidebar, “Cypher Query Language”.

Cypher Query Language
Neo4j comes with a clean, object-oriented Java API and enjoys many JVM (Java virtual
machine) language bindings as well as a plethora of drivers for the Neo4j server. But
often data operations are better expressed declaratively by asking “what” than by spec-
ifying “how.”

That’s why the Cypher query language was developed. It builds upon matching patterns
in a graph that are bound to specified nodes and relationships and allows further fil-
tering and paging of the results. Cypher has data manipulation features that allow us
to modify the graph. Cypher query parts can be chained (piped) to enable more ad-
vanced and powerful graph operations.

Each Cypher query can consist of several parts:

START
Defines identifiers, binding nodes, and relationships either by index or ID lookup.
START user=node:customers(name="dave@...")

MATCH
Uses ASCII-ART descriptions for patterns to find in the graph. Patterns are bound
to identifiers and define new identifiers. Each of the subgraphs found during the
query execution spawns an individual result.

MATCH user-[rating:RATED]->product

WHERE
Filters the result using boolean expressions, and uses dot notation for accessing
properties, functions, collection predicates and functions, arithmetic operators,
etc.

WHERE user.name = "Dave" AND ANY(color in product.colors : color = 'red')
OR rating.stars > 3

114 | Chapter 7: Neo4j: A Graph Database

http://neo4j.org/resources/cypher

SKIP LIMIT
Paginates the results with offsets and sizes.

SKIP 20 LIMIT 10

RETURN
Declares what to return from the query. If aggregation functions are used, all non-
aggregated values will be used as grouping values.

return user.name, AVG(rating.stars) AS WEIGHT, product

ORDER BY
Orders by properties or any other expression. ORDER BY user.name ASC, count(*)
DESC

UPDATES
There is more to Cypher. With CREATE [UNIQUE], SET, DELETE, the graph can be
modified on the fly. WITH and FOREACH allow for more advanced query structures.

PARAMETERS
Cypher can be passed in a map of parameters which can be referenced by key (or
position). start n=node({nodeId}) where n.name=~{0} return n

The results returned by Cypher are inherently tabular, much like JDBC ResultSets. The
column names serve as row-value keys.

There is a Java DSL for Cypher that, instead of using semantic-free strings for queries,
offers a type-safe API to build up Cypher queries. It allows us to optionally leverage
Querydsl (see Chapter 3) to build expressions for filters and index queries out of gen-
erated domain object literals. With an existing JDBC driver, cypher queries can be easily
integrated into existing Java (Spring) applications and other JDBC tools.

Basic Graph Repository Operations
The basic operations provided by the repositories mimic those offered by the Neo4jTem
plate, only bound to the declared repository domain class. So findOne(…), save(…),
delete(…), findAll(…), and so on, take and return instances of the domain class.

Spring Data Neo4j stores the type (hierarchy) information of the mapped entities in the
graph. It uses one of several strategies for this purpose, defaulting to an index-based
storage. This type information is used for all repository and template methods that
operate on all instances of a type and for verification of requested types versus stored
types.

The updating repository methods are transactional by default, so there is no need to
declare a transaction around them. For domain use cases, however, it is sensible to do
so anyway, as usually more than one database operation is encapsulated by a business
transaction. (This uses the Neo4j supplied support for JtaTransactionManager)

For index operations, specific methods like findAllByPropertyValue(), findAllBy
Query(), and findAllByRange() exist in the IndexRepository and are mapped directly

Combining Graph and Repository Power | 115

https://github.com/rickardoberg/neo4j-jdbc

to the underlying index infrastructure of Neo4j, but take the repository domain class
and existing index-related annotations into account. Similar methods are exposed in
the TraversalRepository whose findAllByTraversal() method allows direct access to
the powerful graph traversal mechanisms of Neo4j. Other provided repository inter-
faces offer methods for spatial queries or the Cypher-DSL integration.

Derived and Annotated Finder Methods
Besides the previously discussed basic operations, Spring Data Neo4j repositories sup-
port custom finder methods by leveraging the Cypher query language. For both anno-
tated and derived finder methods, additional Pageable and Sort method parameters are
taken into account during query execution. They are converted into appropriate ORDER
BY, SKIP, and LIMIT declarations.

Annotated finder methods

Finders can use Cypher directly if we add a @Query annotation that contains the query
string, as shown in Example 7-18. The method arguments are passed as parameters to
the Cypher query, either via their parameter position or named according to their
@Parameter annotation, so you can use {index} or {name} in the query string.

Example 7-18. An annotated cypher query on a repository query method

public interface OrderRepository extends GraphRepository<Order> {

 @Query(" START c=node({0}) " +
 " MATCH c-[:ORDERED]->order-[item:LINE_ITEM]->product " +
 " WITH order, SUM (product.price * item.amount) AS value " +
 " WHERE value > {orderValue} " +
 "RETURN order")
 Collection<Order> findOrdersWithMinimumValue(Customer customer,
 @Parameter("orderValue") int value);
}

Result handling

The return types of finder methods can be either an Iterable<T>, in which case the
evaluation of the query happens lazily, or any of these interfaces: Collection<T>,
List<T>, Set<T>, Page<T>. T is the result type of the query, which can be either a mapped
domain entity (when returning nodes or relationships) or a primitive type. There is
support for an interface-based simple mapping of query results. For mapping the re-
sults, we have to create an interface annotated with @MapResult. In the interface we
declare methods for retrieving each column-value. We annotate the methods individ-
ually with @ResultColumn("columnName"). See Example 7-19.

Example 7-19. Defining a MapResult and using it in an interface method

@MapResult
interface RatedProduct {

116 | Chapter 7: Neo4j: A Graph Database

 @ResultColumn("product")
 Product getProduct();

 @ResultColumn("rating")
 Float getRating();

 @ResultColumn("count")
 int getCount();
}

public interface ProductRepository extends GraphRepository<Product> {

 @Query(" START tag=node({0}) " +
 " MATCH tag-[:TAG]->product<-[rating:RATED]-() " +
 "RETURN product, avg(rating.stars) AS rating, count(*) as count " +
 " ORDER BY rating DESC")
 Page<RatedProduct> getTopRatedProductsForTag(Tag tag, Pageable page);
}

To avoid the proliferation of query methods for different granularities, result types, and
container classes, Spring Data Neo4j provides a small fluent API for result handling.
The API covers automatic and programmatic value conversion. The core of the result
handling API centers on converting an iterable result into different types using a con-
figured or given ResultConverter, deciding on the granularity of the result size and
optionally on the type of the target container. See Example 7-20.

Example 7-20. Result handling API

public interface ProductRepository extends GraphRepository<Product> {

 Result<Map<String,Object>> findByName(String name);
}

Result<Map<String,Object>> result = repository.findByName("mac");

// return a single node (or null if nothing found)
Node n = result.to(Node.class).singleOrNull();
Page<Product> page = result.to(Product.class).as(Page.class);

Iterable<String> names = result.to(String.class,
 new ResultConverter<Map<String, Object>, String>>() {
 public String convert(Map<String, Object> row) {
 return (String) ((Node) row.get("name")).getProperty("name");
 }
 });

Derived finder methods

As described in Chapter 2, the derived finder methods (see “Property expres-
sions” on page 17) are a real differentiator. They leverage the existing mapping infor-
mation about the targeted domain entity and an intelligent parsing of the finder method
name to generate a query that fetches the information needed.

Combining Graph and Repository Power | 117

Derived finder methods—like ProductRepository.findByNameAndColorAndTagName
(name, color, tagName)—start with find(By) or get(By) and then contain a succession
of property expressions. Each of the property expressions either points to a property
name of the current type or to another, related domain entity type and one of its prop-
erties. These properties must exist on the entity. If that is not the case, the repository
creation fails early during ApplicationContext startup.

For all valid finder methods, the repository constructs an appropriate query by using
the mapping information about domain entities. Many aspects—like in-graph type
representation, indexing information, field types, relationship types, and directions—
are taken into account during the query construction. This is also the point at which
appropriate escaping takes place.

Thus, Example 7-20 would be converted to the query shown in Example 7-21.

Example 7-21. Derived query generation

@NodeEntity
class Product {

 @Indexed
 String name;
 int price;

 @RelatedTo(type = "TAG")
 Set<Tag> tags;
}

@NodeEntity
class Tag {

 @Indexed
 String name;
}

public interface ProductRepository extends GraphRepository<Product> {

 List<Product> findByNameAndPriceGreaterThanAndTagsName(String name, int price,
 String tagName);
}

// Generated query
 START product = node:Product(name = {0}), productTags = node:Tag(name = {3})
 MATCH product-[:TAG]->productTags
 WHERE product.price > {1}
RETURN product

This example demonstrates the use of index lookups for indexed attributes and the
simple property comparison. If the method name refers to properties on other, related
entities, then the query builder examines those entities for inclusion in the generated
query. The builder also adds the direction and type of the relationship to that entity. If
there are more properties further along the path, the same action is repeated.

118 | Chapter 7: Neo4j: A Graph Database

Supported keywords for the property comparison are:

• Arithmetic comparisons like GreaterThan, Equals, or NotEquals.

• IsNull and IsNotNull check for null (or nonexistent) values.

• Contains, StartsWith, EndsWith and Like are used for string comparison.

• The Not prefix can be used to negate an expression.

• Regexp for matching regular expressions.

For many of the typical query use cases, it is easy enough to just code a derived finder
declaration in the repository interface and use it. Only for more involved queries is an
annotated query, traversal description, or manual traversing by following relationships
necessary.

Advanced Graph Use Cases in the Example Domain
Besides the ease of mapping real-world, connected data into the graph, using the graph
data model allows you to work with your data in interesting ways. By focusing on the
value of relationships in your domain, you can find new insights and answers that are
waiting to be revealed in the connections.

Multiple Roles for a Single Node
Due to the schema-free nature of Neo4j, a single node or relationship is not limited to
be mapped to a single domain class. Sometimes it is sensible to structure your domain
classes into smaller concepts/roles that are valid for a limited scope/context.

For example, an Order is used differently in different stages of its life cycle. Depending
on the current state, it is either a shopping cart, a customer order, a dispatch note, or
a return order. Each of those states is associated with different attributes, constraints,
and operations. Usually, this would have been modeled either in different entities stored
in separate tables or in a single Order class stored in a very large and sparse table row.
With the schemaless nature of the graph database, the order will be stored in a node
but only contains the state (and relationships) that are needed in the current state (and
those still needed from past states). Usually, it gains attributes and relationships during
its life, and gets simplified and locked down only when being retired.

Spring Data Neo4j allows us to model such entities with different classes, each of which
covers one period of the life cycle. Those entities share a few attributes; each has some
unique ones. All entities are mapped to the same node, and depending on the type
provided at load time with template.findOne(id,type), or at runtime with tem
plate.projectTo(object, type), it can be used differently in different contexts. When
the projected entity is stored, only its current attributes (and relationships) are updated;
the other existing ones are left alone.

Advanced Graph Use Cases in the Example Domain | 119

Product Categories and Tags as Examples for In-Graph Indexes
For handling larger product catalogs and ease of exploration, it is important to be able
to put products into categories. A naive approach that uses a single category attribute
with just one value per product falls short in terms of long-term usability. In a graph,
multiple connections to category nodes per entity are quite natural. Adding a tree of
categories, where each has relationships to its children and each product has relation-
ships to the categories it belongs to, is really simple. Typical use cases are:

• Navigation of the category tree

• Listing of all products in a category subtree

• Listing similar products in the same category

• Finding implicit/non-obvious relationships between product categories (e.g., baby
care products and lifestyle gadgets for young parents)

The same goes for tags, which are less restrictive than categories and often form a
natural graph, with all the entities related to tags instead of a hierarchical tree like
categories. In a graph database, both multiple categories as well as tags form implicit
secondary indexing structures that allow navigational access to the stored entities in
many different ways. There can be other secondary indexes (e.g., geoinformation, time-
related indices, or other interesting dimensions). See Example 7-22.

Example 7-22. Product categories and tags

@NodeEntity
public class Category extends AbstractEntity {
 @Indexed(unique = true) String name;
 @Fetch // loads all children eagerly (cascading!)
 @RelatedTo(type="SUB_CAT")
 Set<Category> children = new HashSet<Category>();

 public void addChild(Category cat) {
 this.children.add(cat);
 }
}

@NodeEntity
public class Product extends AbstractEntity {
 @RelatedTo(type="CATEGORY")
 Set<Category> categories = new HashSet<Category>();

 public void addCategory(Category cat) {
 this.categories.add(cat);
 }
}

public interface ProductRepository extends GraphRepository<Product> {
 @Query("START cat=node:Category(name={0}) "+
 "MATCH cat-[SUB_CAT*0..5]-leaf<-[:CATEGORY]-product "+
 "RETURN distinct product")

120 | Chapter 7: Neo4j: A Graph Database

 List<Product> findByCategory(String category);
}

The Category forms a nested composite structure with parent-child relationships. Each
category has a unique name and a set of children. The category objects are used for
creating the structure and relating products to categories. For leveraging the connect-
edness of the products, a custom (annotated) query navigates from a start (or root)
category, via the next zero through five relationships, to the products connected to this
subtree. All attached products are returned in a list.

Leverage Similar Interests (Collaborative Filtering)
Collaborative filtering, demonstrated in Example 7-23, relies on the assumption that
we can find other “people” who are very similar/comparable to the current user in their
interests or behavior. Which criteria are actually used for similarity—search/buying
history, reviews, or others—is domain-specific. The more information the algorithm
gets, the better the results.

In the next step, the products that those similar people also bought or liked are taken
into consideration (measured by the number of their mentions and/or their rating
scores) optionally excluding the items that the user has already bought, owns, or is not
interested in.

Example 7-23. Collaborative filtering

public interface ProductRepository extends GraphRepository<Product> {
 @Query("START cust=node({0}) " +
 " MATCH cust-[r1:RATED]->product<-[r2:RATED]-people " +
 " -[:ORDERED]->order-[:ITEMS]->suggestion " +
 " WHERE abs(r1.stars - r2.stars) <= 2 " +
 " RETURN suggestion, count(*) as score" +
 " ORDER BY score DESC")
 List<Suggestion> recommendItems(Customer customer);

 @MapResult
 interface Suggestion {
 @ResultColumn("suggestion") Product getProduct();
 @ResultColumn("score") Integer getScore();
 }
}

Recommendations
Generally in all domains, but particularly in the ecommerce domain, making recom-
mendations of interesting products for customers is key to leveraging the collected
information on product reviews and buying behavior. Obviously, we can derive rec-
ommendations from explicit customer reviews, especially if there is too little actual
buying history or no connected user account. For the initial suggestion, a simple

Advanced Graph Use Cases in the Example Domain | 121

ordering of listed products by number and review rating (or more advanced scoring
mechanisms) is often sufficient.

For more advanced recommendations, we use algorithms that take multiple input data
vectors into account (e.g., ratings, buying history, demographics, ad exposure, and geo-
information).

The query in Example 7-24 looks up a product and all the ratings by any customer and
returns a single page of top-rated products (depending on the average rating).

Example 7-24. Simple recommendation

public interface ProductRepository extends GraphRepository<Product> {
 @Query("START product=node:product_search({0}) "+
 "MATCH product<-[r:RATED]-customer "+
 "RETURN product ORDER BY avg(r.stars) DESC"
 Page<Product> listProductsRanked(String description, Pageable page);

}

Transactions, Entity Life Cycle, and Fetch Strategies
With Neo4j being a fully transactional database, Spring Data Neo4j participates in
(declarative) Spring transaction management, and builds upon transaction managers
provided by Neo4j that are compatible with the Spring JtaTransactionManager. The
transaction-manager bean named neo4jTransactionManager (aliased to transactionMan
ager) is created in the <neo4j:config /> element. As transaction management is con-
figured by default, @Transactional annotations are all that’s needed to define transac-
tional scopes. Transactions are needed for all write operations to the graph database,
but reads don’t need transactions. It is possible to nest transactions, but nested trans-
actions will just participate in the running parent transaction (like REQUIRED).

Spring Data Neo4j, as well as Neo4j itself, can integrate with external XA transaction
managers; the Neo4j manual describes the details.

For the simple mapping mode, the life cycle is straightforward: a new entity is just a
POJO instance until it has been stored to the graph, in which case it will keep the
internal id of the element (node or relationship) in the @GraphId annotated field for later
reattachment or merging. Without the id set, it will be handled as a new entity and
trigger the creation of a new graph element when saved.

Whenever entities are fetched in simple mapping mode from the graph, they are auto-
matically detached. The data is copied out of the graph and stored in the domain object
instances. An important aspect of using the simple mapping mode is the fetch depth.
As a precaution, the transaction fetches only the direct properties of an entity and
doesn’t follow relationships by default when loading data.

122 | Chapter 7: Neo4j: A Graph Database

http://springsource.org/spring-data/neo4j

To achieve a deeper fetch graph, we need to supply a @Fetch annotation on the fields
that should be eagerly fetched. For entities and fields not already fetched, the tem
plate.fetch(…) method will load the data from the graph and update them in place.

Advanced Mapping Mode
Spring Data Neo4j also offers a more advanced mapping mode. Its main difference from
the simple mapping mode is that it offers a live view of the graph projected into the
domain objects. So each field access will be intercepted and routed to the appropriate
properties or relationships (for @RelatedTo[Via] fields). This interception uses AspectJ
under the hood to work its magic.

We can enable the advanced mapping mode by adding the org.springframe
work.data:spring-data-neo4j-aspects dependency and configuring either a AspectJ
build plug-in or load-time-weaving activation (Example 7-25).

Example 7-25. Spring Data Neo4j advanced mapping setup

<properties>
 <aspectj.version>1.6.12</aspectj.version>
</properties>

<dependency>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-neo4j-aspects</artifactId>
 <version>${spring-data-neo4j.version}</version>
</dependency>
<dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjrt</artifactId>
 <version>${aspectj.version}</version>
</dependency>

....
<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>aspectj-maven-plugin</artifactId>
 <version>1.2</version>
 <dependencies>
 <dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjrt</artifactId>
 <version>${aspectj.version}</version>
 </dependency>
 <dependency>
 <groupId>org.aspectj</groupId>
 <artifactId>aspectjtools</artifactId>
 <version>${aspectj.version}</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>

Advanced Mapping Mode | 123

 <goals>
 <goal>compile</goal>
 <goal>test-compile</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <outxml>true</outxml>
 <aspectLibraries>
 <aspectLibrary>
 <groupId>org.springframework</groupId>
 <artifactId>spring-aspects</artifactId>
 </aspectLibrary>
 <aspectLibrary>
 <groupId>org.springframework.data</groupId>
 <artifactId>spring-data-neo4j-aspects</artifactId>
 </aspectLibrary>
 </aspectLibraries>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
</plugin>

Fields are automatically read from the graph at any time, but for immediate write-
through the operation must happen inside of a transaction. Because objects can be
modified outside of a transaction, a life cycle of attached/detached objects has been
established. Objects loaded from the graph or just saved inside a transaction are at-
tached; if an object is modified outside of a transaction or newly created, it is
detached. Changes to detached objects are stored in the object itself, and will only be
reflected in the graph with the next save operation, causing the entity to become at-
tached again.

This live view of the graph database allows for faster operation as well as “direct”
manipulation of the graph. Changes will be immediately visible to other graph opera-
tions like traversals, Cypher queries, or Neo4j Core API methods. Because reads al-
ways happen against the live graph, all changes by other committed transactions are
immediately visible. Due to the immediate live reads from the graph database, the
advanced mapping mode has no need of fetch handling and the @Fetch annotation.

Working with Neo4j Server
We’ve already mentioned that Neo4j comes in two flavors. You can easily use the high-
performance, embeddable Java database with any JVM language, preferably with that
language's individual idiomatic APIs/drivers. Integrating the embedded database is as
simple as adding the Neo4j libraries to your dependencies.

The other deployment option is Neo4j server. The Neo4j server module is a simple
download or operating system package that is intended to be run as an independent
service. Access to the server is provided via a web interface for monitoring, operations,

124 | Chapter 7: Neo4j: A Graph Database

http://docs.neo4j.org/chunked/milestone/languages.html
http://neo4j.org/download

and visualizations (refer back to Example 7-1). A comprehensive REST API offers
programmatic access to the database functionality. This REST API exposes a Cypher
endpoint. Using the Neo4j-Java-Rest-Binding (which wraps the Neo4j Java API around
the REST calls) to interact transparently with the server, Spring Data Neo4j can work
easily with the server.

By depending on org.springframework.data:spring-data-neo4j-rest and changing the
setup to point to the remote URL of the server, we can use Spring Data Neo4j with a
server installation (Example 7-26). Please note that with the current implementation,
not all calls are optimally transferred over the network API, so the server interaction
for individual operations will be affected by network latency and bandwidth. It is rec-
ommended to use remotely executed queries as much as possible to reduce that impact.

Example 7-26. Server connection configuration setup

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:neo4j="http://www.springframework.org/schema/data/neo4j"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/data/neo4j
 http://www.springframework.org/schema/data/neo4j/spring-neo4j.xsd">

 <neo4j:config graphDatabaseService="graphDatabaseService" />
 <bean id="graphDatabaseService"
 class="org.springframework.data.neo4j.rest.SpringRestGraphDatabase">
 <constructor-arg index="0" value="http://localhost:7474/db/data" />
 </bean>
</beans>

The SpringRestGraphDatabase connects via a RestAPI instance, which you can get to
execute individual or batched REST operations more efficiently. For instance, creating
entities with immediate property population, both for conventional or unique entities,
is more efficient with the RestAPI.

Continuing From Here
This chapter presented some of the possibilities that graph databases—in particular
Neo4j—offer and how Spring Data Neo4j gives you convenient access to them while
keeping the doors open for raw, low-level graph processing.

The next thing you should do is consider the data you are working with (or want to
work with) and see how connected the entities are. Look closely—you’ll see they’re
often much more connected than you’d think at first glance. Taking one of these do-
mains, and putting it first on a whiteboard and then into a graph database, is your first
step toward realizing the power behind these concepts. For writing an application that
uses the connected data, Spring Data Neo4j is an easy way to get started. It enables you

Continuing From Here | 125

http://github.com/neo4j/java-rest-binding

to easily create graph data and expose results of graph queries as your well-known
POJOs, which eases the integration with other libraries and (UI) frameworks.

To learn how that process works for a complete web application, see [Hunger12] in
the Bibliography, which is part of the reference documentation and the GitHub repos-
itory. The tutorial is a comprehensive walkthrough of creating the social movie database
cineasts.net, and explains data modeling, integration with external services, and the
web layer.

Feel free to reach out at any time to the Springsource Forums, Stackoverflow, or the
Neo4j Google Group for answers to your questions. Enjoy!

126 | Chapter 7: Neo4j: A Graph Database

http://spring.neo4j.org/discussions
http://neo4j.org/forums

CHAPTER 8

Redis: A Key/Value Store

In this chapter, we’ll look at the support Spring Data offers for the key/value store
Redis. We’ll briefly look at how Redis manages data, show how to install and configure
the server, and touch on how to interact with it from the command line. Then we’ll
look at how to connect to the server from Java and how the RedisTemplate organizes
the multitude of operations we can perform on data stored in Redis. We’ll look at ways
to store POJOs using JSON, and we’ll also briefly discuss how to use the fast and
efficient pub/sub (publish/subscribe) capability to do basic event-based programming.

Redis in a Nutshell
Redis is an extremely high-performance, lightweight data store. It provides key/value
data access to persistent byte arrays, lists, sets, and hash data structures. It supports
atomic counters and also has an efficient topic-based pub/sub messaging functionality.
Redis is simple to install and run and is, above all, very, very fast at data access. What
it lacks in complex querying functionality (like that found in Riak or MongoDB), it
makes up for in speed and efficiency. Redis servers can also be clustered together to
provide for very flexible deployment. It’s easy to interact with Redis from the command
line using the redis-cli binary that comes with the installation.

Setting Up Redis
To start working with Redis, you’ll want to have a local installation. Depending on
your platform, the installation process ranges from easy to literally one command. The
easiest installation process, shown in Example 8-1, is on Mac OS X using Homebrew.
Other Unix systems are natively supported if you build the server from source. (Build
instructions are on the Redis website, though they are identical to most other *NIX
packages we’ve built—namely, unzip it, cd into that directory, and type make.) The
download page for Redis also lists a couple of unofficial efforts to port Redis to the
Win32/64 platform, though those are not considered production quality. For the pur-
poses of this chapter, we’ll stick to the *NIX version, where Redis is most at home.

127

http://redis.io/
http://redis.io/
http://wiki.basho.com/Riak.html
http://www.mongodb.org
http://mxcl.github.com/homebrew/
http://redis.io/download

Example 8-1. Installing Redis on Mac OS X using Homebrew

$ brew install redis
==> Downloading http://redis.googlecode.com/files/redis-2.4.15.tar.gz
100.0%
==> make -C /private/tmp/homebrew-redis-2.4.15-WbS5/redis-2.4.15/src CC=/usr/bin/clang
==> Caveats
If this is your first install, automatically load on login with:
 mkdir -p ~/Library/LaunchAgents
 cp /usr/local/Cellar/redis/2.4.15/homebrew.mxcl.redis.plist ~/Library/LaunchAgents/
 launchctl load -w ~/Library/LaunchAgents/homebrew.mxcl.redis.plist

If this is an upgrade and you already have the homebrew.mxcl.redis.plist loaded:
 launchctl unload -w ~/Library/LaunchAgents/homebrew.mxcl.redis.plist
 cp /usr/local/Cellar/redis/2.4.15/homebrew.mxcl.redis.plist ~/Library/LaunchAgents/
 launchctl load -w ~/Library/LaunchAgents/homebrew.mxcl.redis.plist

 To start redis manually:
 redis-server /usr/local/etc/redis.conf

 To access the server:
 redis-cli
==> Summary
/usr/local/Cellar/redis/2.4.15: 9 files, 556K, built in 12 seconds

Just so we can get a server running quickly and see some results, let’s run the server in
a terminal, in the foreground. This is good for debugging because it logs directly to the
console to let you know what the server is doing internally. Instructions on installing
a boot script to get the server running when you restart your machine will, of course,
vary by platform. Setting that up is an exercise left to the reader.

We’re just going to use the default settings for the server, so starting it is simply a matter
of executing redis-server, as in Example 8-2.

Example 8-2. Starting the server

$ redis-server
[91688] 25 Jul 09:37:36 # Warning: no config file specified, using the default config.
 In order to specify a config file use 'redis-server /path/to/redis.conf'
[91688] 25 Jul 09:37:36 * Server started, Redis version 2.4.15
[91688] 25 Jul 09:37:36 * The server is now ready to accept connections on port 6379
[91688] 25 Jul 09:37:36 - 0 clients connected (0 slaves), 922304 bytes in use

Using the Redis Shell
Redis comes with a very useful command-line shell that you can use interactively or
from batch jobs. We’ll just be using the interactive part of the shell so we can poke
around inside the server, look at our data, and interact with it. The command shell has
an extensive help system (Example 8-3) so once you’re in there, hit the Tab key a couple
of times to have the shell prompt you for help.

128 | Chapter 8: Redis: A Key/Value Store

Example 8-3. Interacting with the Redis server

$ redis-cli
redis 127.0.0.1:6379> help
redis-cli 2.4.15
Type: "help @<group>" to get a list of commands in <group>
 "help <command>" for help on <command>
 "help <tab>" to get a list of possible help topics
 "quit" to exit
redis 127.0.0.1:6379> |

The Redis documentation is quite helpful here, as it gives a nice overview of all the
commands available and shows you some example usage. Keep this page handy because
you’ll be referring back to it often.

It will pay dividends to spend some time familiarizing yourself with the basic SET and
GET commands. Let’s take a moment and play with inserting and retrieving data
(Example 8-4).

Example 8-4. SET and GET data in Redis

$ redis-cli
redis 127.0.0.1:6379> keys *
(empty list or set)
redis 127.0.0.1:6379> set spring-data-book:redis:test-value 1
OK
redis 127.0.0.1:6379> keys *
1) "spring-data-book:redis:test-value"
redis 127.0.0.1:6379> get spring-data-book:redis:test-value
"1"
redis 127.0.0.1:6379> |

Notice that we didn’t put quotes around the value 1 when we SET it. Redis doesn’t
have datatypes like other datastores, so it sees every value as a list of bytes. In the
command shell, you’ll see these printed as strings. When we GET the value back out,
we see "1" in the command shell. We know by the quotes, then, that this is a string.

Connecting to Redis
Spring Data Redis supports connecting to Redis using either the Jedis, JRedis, RJC, or
SRP driver libraries. Which you choose doesn’t make any difference to your use of the
Spring Data Redis library. The differences between the drivers have been abstracted
out into a common set of APIs and template-style helpers. For the sake of simplicity,
the example project uses the Jedis driver.

To connect to Redis using Jedis, you need to create an instance of org.springframe
work.data.redis.connection.jedis.JedisConnectionFactory. The other driver libraries
have corresponding ConnectionFactory subclasses. A configuration using JavaConfig
might look like Example 8-5.

Connecting to Redis | 129

http://redis.io/commands
https://github.com/xetorthio/jedis
https://github.com/alphazero/jredis
https://github.com/e-mzungu/rjc
https://github.com/spullara/redis-protocol

Example 8-5. Connecting to Redis with Jedis

@Configuration
public class ApplicationConfig {

 @Bean
 public JedisConnectionFactory connectionFactory() {
 JedisConnectionFactory connectionFactory = new JedisConnectionFactory();
 connectionFactory.setHostName("localhost");
 connectionFactory.setPort(6379);
 return connectionFactory;
 }
}

The central abstraction you’re likely to use when accessing Redis via Spring Data Redis
is the org.springframework.data.redis.core.RedisTemplate class. Since the feature set
of Redis is really too large to effectively encapsulate into a single class, the various
operations on data are split up into separate Operations classes as follows (names are
self-explanatory):

• ValueOperations

• ListOperations

• SetOperations

• ZSetOperations

• HashOperations

• BoundValueOperations

• BoundListOperations

• BoundSetOperations

• BoundZSetOperations

• BoundHashOperations

Object Conversion
Because Redis deals directly with byte arrays and doesn’t natively perform Object to
byte[] translation, the Spring Data Redis project provides some helper classes to make
it easier to read and write data from Java code. By default, all keys and values are stored
as serialized Java objects. If you’re going to be dealing largely with Strings, though,
there is a template class—StringRedisTemplate, shown in Example 8-6—that installs
the String serializer and has the added benefit of making your keys and values human-
readable from the Redis command-line interface.

Example 8-6. Using the StringRedisTemplate

@Configuration
public class ApplicationConfig {

130 | Chapter 8: Redis: A Key/Value Store

 @Bean
 public JedisConnectionFactory connectionFactory() { … }

 @Bean
 public StringRedisTemplate redisTemplate() {
 StringRedisTemplate redisTemplate = new StringRedisTemplate();
 redisTemplate.setConnectionFactory(connectionFactory());
 return redisTemplate;
 }
}

To influence how keys and values are serialized and deserialized, Spring Data Redis
provides a RedisSerializer abstraction that is responsible for actually reading and
writing the bytes stored in Redis. Set an instance of org.springframe
work.data.redis.serializer.RedisSerializer on either the keySerializer or valueSer
ializer property of the template. There is already a built-in RedisSerializer for
Strings, so to use Strings for keys and Longs for values, you would create a simple
serializer for Longs, as shown in Example 8-7.

Example 8-7. Creating reusable serializers

public enum LongSerializer implements RedisSerializer<Long> {

 INSTANCE;

 @Override
 public byte[] serialize(Long aLong) throws SerializationException {
 if (null != aLong) {
 return aLong.toString().getBytes();
 } else {
 return new byte[0];
 }
 }

 @Override
 public Long deserialize(byte[] bytes) throws SerializationException {
 if (bytes.length > 0) {
 return Long.parseLong(new String(bytes));
 } else {
 return null;
 }
 }
}

To use these serializers to make it easy to do type conversion when working with Redis,
set the keySerializer and valueSerializer properties of the template like in the snippet
of JavaConfig code shown in Example 8-8.

Example 8-8. Using serializers in a template instance

@Bean
public RedisTemplate<String, Long> longTemplate() {

Object Conversion | 131

 private static final StringRedisSerializer STRING_SERIALIZER =
 new StringRedisSerializer();

 RedisTemplate<String, Long> tmpl = new RedisTemplate<String, Long>();
 tmpl.setConnectionFactory(connFac);
 tmpl.setKeySerializer(STRING_SERIALIZER);
 tmpl.setValueSerializer(LongSerializer.INSTANCE);

 return tmpl;
}

You’re now ready to start storing counts in Redis without worrying about byte[]-to-
Long conversion. Since Redis supports such a large number of operations—which
makes for a lot of methods on the helper classes—the methods for getting and setting
values are defined in the various RedisOperations interfaces. You can access each of
these interfaces by calling the appropriate opsForX method on the RedisTemplate. Since
we’re only storing discrete values in this example, we’ll be using the ValueOperations
template (Example 8-9).

Example 8-9. Automatic type conversion when setting and getting values

public class ProductCountTracker {

 @Autowired
 RedisTemplate<String, Long> redis;

 public void updateTotalProductCount(Product p) {
 // Use a namespaced Redis key
 String productCountKey = "product-counts:" + p.getId();

 // Get the helper for getting and setting values
 ValueOperations<String, Long> values = redis.opsForValue();

 // Initialize the count if not present
 values.setIfAbsent(productCountKey, 0L);

 // Increment the value by 1
 Long totalOfProductInAllCarts = values.increment(productCountKey, 1);
 }

}

After you call this method from your application and pass a Product with an id of 1,
you should be able to inspect the value from redis-cli and see the string "1" by issuing
the Redis command get product-counts:1.

Object Mapping
It’s great to be able to store simple values like counters and strings in Redis, but it’s
often necessary to store richer sets of related information. In some cases, these might
be properties of an object. In other cases, they might be the keys and values of a hash.

132 | Chapter 8: Redis: A Key/Value Store

http://static.springsource.org/spring-data/data-redis/docs/current/api/org/springframework/data/redis/core/package-summary.html

Using the RedisSerializer, you can store an object into Redis as a single value. But
doing so won’t make the properties of that object very easy to inspect or retrieve indi-
vidually. What you probably want in that case is to use a Redis hash. Storing your
properties in a hash lets you access all of those properties together by pulling them all
out as a Map<String, String>, or you can reference the individual properties in the hash
without touching the others.

Since everything in Redis is a byte[], for this hash example we’re going to simpify by
using Strings for keys and values. The operations for hashes, like those for values, sets,
and so on, are accessible from the RedisTemplate opsForHash() method. See Exam-
ple 8-10.

Example 8-10. Using the HashOperations interface

private static final RedisSerializer<String> STRING_SERIALIZER =
 new StringRedisSerializer();

public void updateTotalProductCount(Product p) {

 RedisTemplate tmpl = new RedisTemplate();
 tmpl.setConnectionFactory(connectionFactory);
 // Use the standard String serializer for all keys and values
 tmpl.setKeySerializer(STRING_SERIALIZER);
 tmpl.setHashKeySerializer(STRING_SERIALIZER);
 tmpl.setHashValueSerializer(STRING_SERIALIZER);

 HashOperations<String, String, String> hashOps = tmpl.opsForHash();

 // Access the attributes for the Product
 String productAttrsKey = "products:attrs:" + p.getId();

 Map<String, String> attrs = new HashMap<String, String>();

 // Fill attributes
 attrs.put("name", "iPad");
 attrs.put("deviceType", "tablet");
 attrs.put("color", "black");
 attrs.put("price", "499.00");

 hashOps.putAll(productAttrsKey, attrs);

}

Assuming the Product has an id of 1, from redis-cli you should be able to list all the
keys of the hash by using the HKEYS command (Example 8-11).

Example 8-11. Listing hash keys

redis 127.0.0.1:6379> hkeys products:attrs:1
1) "price"
2) "color"
3) "deviceType"
4) "name"

Object Mapping | 133

redis 127.0.0.1:6379> hget products:attrs:1 name
"iPad"

Though this example just uses a String for the hash’s value, you can use any RedisSer
ializer instance for the template’s hashValueSerializer. If you wanted to store com-
plex objects rather than Strings, for instance, you might replace the hashValueSerial
izer in the template with an instance of org.springframework.data.redis.serial
izer.JacksonJsonRedisSerializer for serializing objects to JSON, or org.springframe
work.data.redis.serializer.OxmSerializer for marshalling and unmarshalling your
object using Spring OXM.

Atomic Counters
Many people choose to use Redis because of the atomic counters that it supports. If
multiple applications are all pointing at the same Redis instance, then those distributed
applications can consistently and atomically increment a counter to ensure uniqueness.
Java already contains AtomicInteger and AtomicLong classes for atomically incrementing
counters across threads, but that won’t help us if those counters are in other JVM
processes or ClassLoaders. Spring Data Redis implements a couple of helper classes
similar to AtomicInteger and AtomicLong and backs them by a Redis instance. Accessing
distributed counters within your application is as easy as creating an instance of these
helper classes and pointing them all to the same Redis server (Example 8-12).

Example 8-12. Using RedisAtomicLong

public class CountTracker {

 @Autowired
 RedisConnectionFactory connectionFactory;

 public void updateProductCount(Product p) {
 // Use a namespaced Redis key
 String productCountKey = "product-counts:" + p.getId();

 // Create a distributed counter.
 // Initialize it to zero if it doesn't yet exist
 RedisAtomicLong productCount =
 new RedisAtomicLong(productCountKey, connectionFactory, 0);

 // Increment the count
 Long newVal = productCount.incrementAndGet();
 }

}

134 | Chapter 8: Redis: A Key/Value Store

http://static.springsource.org/spring-data/data-redis/docs/current/api/org/springframework/data/redis/serializer/JacksonJsonRedisSerializer.html
http://static.springsource.org/spring-data/data-redis/docs/current/api/org/springframework/data/redis/serializer/JacksonJsonRedisSerializer.html
http://static.springsource.org/spring-data/data-redis/docs/current/api/org/springframework/data/redis/serializer/OxmSerializer.html
http://static.springsource.org/spring-data/data-redis/docs/current/api/org/springframework/data/redis/serializer/OxmSerializer.html

Pub/Sub Functionality
Another important benefit of using Redis is the simple and fast publish/subscribe func-
tionality. Although it doesn’t have the advanced features of a full-blown message
broker, Redis’ pub/sub capability can be used to create a lightweight and flexible event
bus. Spring Data Redis exposes a couple of helper classes that make working with this
functionality extremely easy.

Listening and Responding to Messages
Following the pattern of the JMS MessageListenerAdapter, Spring Data Redis has a
MessageListenerAdapter abstraction that works in basically the same way (Exam-
ple 8-13). The JMS version, the MessageListenerAdapter, is flexible in what kind of
listeners it accepts if you don’t want to be tied to a particular interface. You can pass a
POJO with a handleMessage method that takes as its first argument an org.springfra
mework.data.redis.connection.Message, a String, a byte[], or, if you use an appropriate
RedisSerializer, an object of any convertible type. You can define an optional second
parameter, which will be the channel or pattern that triggered this invocation. There
is also a MessageListener interface to give your beans a solid contract to implement if
you want to avoid the reflection-based invocation that’s done when passing in a POJO.

Example 8-13. Adding a simple MessageListener using JavaConfig

@Bean public MessageListener dumpToConsoleListener() {
 return new MessageListener() {
 @Override
 public void onMessage(Message message, byte[] pattern) {
 System.out.println("FROM MESSAGE: " + new String(message.getBody()));
 }
 };
}

Spring Data Redis allows you to place POJOs on the MessageListenerAdapter, and the
container will convert the incoming message into your custom type using a converter
you provide. (See Example 8-14.)

Example 8-14. Setting up a MessageListenerContainer and simple message listener using a POJO

@Bean MessageListenerAdapter beanMessageListener() {
 MessageListenerAdapter listener = new MessageListenerAdapter(new BeanMessageListener()
);
 listener.setSerializer(new BeanMessageSerializer());
 return listener;
}

BeanMessageListener, shown in Example 8-15, is simply a POJO with a method named
handleMessage defined on it, with the first parameter being of type BeanMessage (an
arbitrary class we’ve created for this example). It has a single property on it called
message. Our RedisSerializer will store the contents of this String as bytes.

Pub/Sub Functionality | 135

http://redis.io/topics/pubsub
http://redis.io/topics/pubsub

Example 8-15. Adding a POJO listener using JavaConfig

public class BeanMessageListener {
 public void handleMessage(BeanMessage msg) {
 System.out.println("msg: " + msg.message);
 }
}

The component responsible for actually invoking your listeners when the event is
triggered is an org.springframework.data.redis.listener.RedisMessageListenerCon
tainer. As demonstrated in Example 8-16, it needs to be configured with a RedisCon
nectionFactory and a set of listeners. The container has life cycle methods on it that
will be called by the Spring container if you create it inside an ApplicationContext. If
you create this container programmatically, you’ll need to call the afterProperties
Set() and start() methods manually. Remember to assign your listeners before you
call the start() method, though, or your handlers will not be invoked since the wiring
is done in the start() method.

Example 8-16. Configuring a RedisMessageListenerContainer

@Bean RedisMessageListenerContainer container() {
 RedisMessageListenerContainer container = new RedisMessageListenerContainer();
 container.setConnectionFactory(redisConnectionFactory());
 // Assign our BeanMessageListener to a specific channel
 container.addMessageListener(beanMessageListener(),
 new ChannelTopic("spring-data-book:pubsub-test:dump"));
 return container;
}

Using Spring’s Cache Abstraction with Redis
Spring 3.1 introduced a common and reusable caching abstraction. This makes it easy
to cache the results of method calls in your POJOs without having to explicitly manage
the process of checking for the existence of a cache entry, loading new ones, and ex-
piring old cache entries. Spring 3.1 gives you some helpers that work with a variety of
cache backends to perform these functions for you.

Spring Data Redis supports this generic caching abstraction with the org.springframe
work.data.redis.cache.RedisCacheManager. To designate Redis as the backend for us-
ing the caching annotations in Spring, you just need to define a RedisCacheManager bean
in your ApplicationContext. Then annotate your POJOs like you normally would, with
@Cacheable on methods you want cached.

The RedisCacheManager needs a configured RedisTemplate in its constructor. In this
example, we’re letting the caching abstraction generate a unique integer for us to serve
as the cache key. There are lots of options for how the cache manager stores your results.
You can configure this behavior by placing the appropriate annotation on your @Cache
able methods. In Example 8-17, we’re using an integer serializer for the key and the
built-in JdkSerializationRedisSerializer for the value, since we really don’t know

136 | Chapter 8: Redis: A Key/Value Store

http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/cache.html
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/cache.html#cache-annotations
http://static.springsource.org/spring/docs/3.1.x/spring-framework-reference/html/cache.html#cache-annotations

what we’ll be storing. Using JDK serialization allows us to cache any Serializable Java
object.

To enable the caching interceptor in your ApplicationContext using JavaConfig, you
simply put the @EnableCaching annotation on your @Configuration.

Example 8-17. Configuring caching with RedisCacheManager

@Configuration
@EnableCaching
public class CachingConfig extends ApplicationConfig {

 @SuppressWarnings({"unchecked"})
 @Bean public RedisCacheManager redisCacheManager() {
 RedisTemplate tmpl = new RedisTemplate();
 tmpl.setConnectionFactory(redisConnectionFactory());
 tmpl.setKeySerializer(IntSerializer.INSTANCE);
 tmpl.setValueSerializer(new JdkSerializationRedisSerializer());
 RedisCacheManager cacheMgr = new RedisCacheManager(tmpl);
 return cacheMgr;
 }

 @Bean public CacheableTest cacheableTest() {
 return new CacheableTest();
 }

}

Using Spring’s Cache Abstraction with Redis | 137

PART IV

Rapid Application Development

CHAPTER 9

Persistence Layers with Spring Roo

Spring Roo is a rapid application development tool for Java developers. With Roo, you
can easily build full Java applications in minutes.

We won’t be covering all aspects of Roo development in this chapter. We will focus on
the new repository support for JPA and MongoDB that uses Spring Data to provide
this support. If you want to read more about Roo, go to the Spring Roo project home
page, where you can find links to the reference manual. While on the project home
page, look for a link to download a free O’Reilly ebook by Josh Long and Steve Mayzak
called Getting Started with Roo [LongMay11]. This ebook covers an older 1.1 version
of Roo that does not support the repository layer, but it is a good introduction to Roo
in general. The most up-to-date guide for using Spring Roo is Spring Roo in Action by
Ken Rimple and Srini Penchikala [RimPen12].

A Brief Introduction to Roo
Roo works its magic using code generation combined with AspectJ for injecting be-
havior into your domain and web classes. When you work on a Roo project, the project
files are monitored by Roo and additional artifacts are generated. You still have your
regular Java classes that you can edit, but there are additional features provided for
free. When you create a class with Roo and annotate that class with one or more an-
notations that provide additional capabilities, Roo will generate a corresponding As-
pectJ file that contains one or more AspectJ inter type declarations (ITD). There is, for
instance, an @RooJavaBean annotation that triggers the generation of an AspectJ aspect
declaration that provides ITDs that introduce getters and setters in your Java class.
There’s no need to code that yourself. Let’s see a quick example of how that would
look. Our simple bean class in shown in Example 9-1.

Example 9-1. A simple Java bean class: Address.java

@RooJavaBean
public class Address {

141

http://www.springsource.org/spring-roo/
http://www.springsource.org/spring-roo/

 private String street;

 private String city;

 private String country;
}

As you can see, we don’t code the getters and setters. They will be introduced by the
backing AspectJ aspect file since we used the @RooJavaBean annotation. The generated
AspectJ file looks like Example 9-2.

Example 9-2. The generated AspectJ aspect definition: Address_Roo_JavaBean.aj

// WARNING: DO NOT EDIT THIS FILE. THIS FILE IS MANAGED BY SPRING ROO.
// You may push code into the target .java compilation unit if you wish to edit any member(s).

package com.oreilly.springdata.roo.domain;

import com.oreilly.springdata.roo.domain.Address;

privileged aspect Address_Roo_JavaBean {

 public String Address.getStreet() {
 return this.street;
 }

 public void Address.setStreet(String street) {
 this.street = street;
 }

 public String Address.getCity() {
 return this.city;
 }

 public void Address.setCity(String city) {
 this.city = city;
 }

 public String Address.getCountry() {
 return this.country;
 }

 public void Address.setCountry(String country) {
 this.country = country;
 }

}

You can see that this is defined as a privileged aspect, which means that it will have
access to any private variables declared in the target class. The way you would define
ITDs is by preceding any method names with the target class name, separated by a dot.
So public String Address.getStreet() will introduce a new method in the Address
class with a public String getStreet() signature.

142 | Chapter 9: Persistence Layers with Spring Roo

As you can see, Roo follows a specific naming pattern that makes it easier to identify
what files it has generated. To work with Roo, you can either use a command-line shell
or edit your source files directly. Roo will synchronize all changes and maintain the
source and generated files as necessary.

When you ask Roo to create a project for you, it generates a pom.xml file that is ready
for you to use when you build the project with Maven. In this pom.xml file, there is a
Maven compile as well as an AspectJ plug-in defined. This means that all the AspectJ
aspects are woven at compile time. In fact, nothing from Roo remains in the Java class
files that your build generates. There is no runtime jar dependency. Also, the Roo an-
notations are source-level retention only, so they will not be part of your class files. You
can, in fact, easily get rid of Roo if you so choose. You have the option of pushing all
of the code defined in the AspectJ files into the appropriate source files and removing
any of these AspectJ files. This is called push-in refactoring, and it will leave you with
a pure Java solution, just as if you had written everything from scratch yourself. Your
application still retains all of the functionality.

Roo’s Persistence Layers
Spring Roo started out supporting JPA as the only persistence option. It also was opin-
ionated in terms of the data access layer. Roo prescribed an active record data access
style where each entity provides its finder, save, and delete methods.

Starting with Roo version 1.2, we have additional options for the persistence layer (see
Figure 9-1). Roo now allows you to choose between the default active record style and
a repository-based persistence layer. If you choose the repository approach, you have
a choice between JPA and MongoDB as the persistence providers. The actual repository
support that Roo uses is the one provided by Spring Data, which we have already seen
in Chapter 2.

In addition to an optional repository layer, Roo now also lets you define a service layer
on top of either the active record style or repository style persistence layer.

Quick Start
You can use Roo either as a command-line tool or within an IDE, like the free Spring
Tool Suite, that has built-in Roo support. Another IDE that has support for Roo is
IntelliJ IDEA, but we won’t be covering the support here.

Using Roo from the Command Line
First, you need to download the latest Spring Roo distribution from the download
page. Once you have the file downloaded, unzip it somewhere on your system. In the
bin directory, there is a roo.sh shell script for Unix-style systems as well as a roo.bat

Quick Start | 143

http://www.springsource.com/download/community?project=Spring%20Roo
http://www.springsource.com/download/community?project=Spring%20Roo

batch file for Windows. When you want to create a Roo project, simply create a project
directory and start Roo using the shell script or the batch file. If you add the bin directory
to your path, you can just use the command name to start Roo; otherwise, you will
have to provide the fully qualified path.

Once Roo starts up, you are greeted with the following screen (we entered hint at the
prompt to get the additional information):

 ____ ____ ____
 / __ \/ __ \/ __ \
 / /_/ / / / / / / /
 / _, _/ /_/ / /_/ /
/_/ |_|____/____/ 1.2.2.RELEASE [rev 7d75659]

Welcome to Spring Roo. For assistance press TAB or type "hint" then hit ENTER.
roo> hint
Welcome to Roo! We hope you enjoy your stay!

Before you can use many features of Roo, you need to start a new project.

To do this, type 'project' (without the quotes) and then hit TAB.

Figure 9-1. Spring Roo 1.2 layer architecture

144 | Chapter 9: Persistence Layers with Spring Roo

Enter a --topLevelPackage like 'com.mycompany.projectname' (no quotes).
When you've finished completing your --topLevelPackage, press ENTER.
Your new project will then be created in the current working directory.

Note that Roo frequently allows the use of TAB, so press TAB regularly.
Once your project is created, type 'hint' and ENTER for the next suggestion.
You're also welcome to visit http://forum.springframework.org for Roo help.
roo>

We are now ready to create a project and start developing our application. At any time,
you can enter hint, and Roo will respond with some instruction on what to do next
based on the current state of your application development. To cut down on typing,
Roo will attempt to complete the commands you enter whenever you hit the Tab key.

Using Roo with Spring Tool Suite
The Spring Tool Suite comes with built-in Roo support, and it also comes bundled with
Maven and the Developer Edition of VMware vFabric tc Server. This means that you
have everything you need to develop applications with Roo. Just create your first Roo
application using the menu option File→New→Spring Roo Project. You can see this in
action in Figure 9-2.

Figure 9-2. Creating a Spring Roo project—menu option

Quick Start | 145

This opens a “Create a new Roo Project” dialog screen, as shown in Figure 9-3.

Figure 9-3. Creating a Spring Roo project—new project dialog

Just fill in the “Project name” and “Top level package name,” and then select WAR as
the packaging. Click Next, and then click Finish on the next screen. The project should
now be created, and you should also see the Roo shell window, as shown in Figure 9-4.

146 | Chapter 9: Persistence Layers with Spring Roo

A Spring Roo JPA Repository Example
We are now ready to build the first Roo project. We will start with a customer service
application based on the same domain model that we have seen in earlier chapters. We
will create a Customer class and an associated Address class, link them together, and
create repositories and really basic data entry screens for them. Since Roo’s repository
support supports both JPA and MongoDB, using the Spring Data repository support,
we will create one of each kind of application. As you will see, they are almost identical,
but there are a couple of differences that we will highlight. So, let’s get started. We’ll
begin with the JPA application.

Creating the Project
If you are using Spring Tool Suite, then just follow the aforementioned instructions to
create a new Spring Roo project. On the “Create a new Roo Project” dialog screen,
provide the following settings:

• Project name: roo-spring-data-jpa

• Top level package name: com.oreilly.springdata.roo

• Packaging: WAR

Figure 9-4. Creating a Spring Roo project—new project with Roo Shell

A Spring Roo JPA Repository Example | 147

If you are using the command-line Roo shell, you need to create a roo-spring-data-jpa
directory; once you change to this new directory, you can start the Roo shell as just
explained. At the roo> prompt, enter the following command:

project --topLevelPackage com.oreilly.springdata.roo ↪
 --projectName roo-spring-data-jpa --java 6 --packaging WAR

You now have created a new project, and we are ready to start developing the appli-
cation. From here on, the actions will be the same whether you are using the Roo shell
from the command line or inside the Spring Tool Suite.

Setting Up JPA Persistence
Setting up the JPA persistence configuration consists of selecting a JPA provider and a
database. We will use Hibernate together with HSQLDB for this example. At the
roo> prompt, enter the following:

jpa setup --provider HIBERNATE --database HYPERSONIC_PERSISTENT

Remember that when entering these commands, you can always press
the Tab key to get completion and suggestions for available options. If
you are using the Spring Tool Suite, press Ctrl+Space instead.

Creating the Entities
Let’s create our entities, starting with the Address class:

entity jpa --class ~.domain.Address --activeRecord false
field string --fieldName street --notNull
field string --fieldName city --notNull
field string --fieldName country --notNull

That wasn’t too hard. Note that we specified --activeRecord false, which means that
we will have to provide the CRUD functionality using a repository. The resulting
Address class looks like this:

package com.oreilly.springdata.roo.domain;

import javax.validation.constraints.NotNull;
import org.springframework.roo.addon.javabean.RooJavaBean;
import org.springframework.roo.addon.jpa.entity.RooJpaEntity;
import org.springframework.roo.addon.tostring.RooToString;

@RooJavaBean
@RooToString
@RooJpaEntity
public class Address {

 @NotNull
 private String street;

148 | Chapter 9: Persistence Layers with Spring Roo

 @NotNull
 private String city;

 @NotNull
 private String country;
}

We see the private fields we declared and three Roo annotations: @RooJavaBean, @Roo
ToString, and @RooJpaEntity. These annotations have corresponding AspectJ aspect
declarations that you can find in the same directory as the Java class.

Let’s create the EmailAddress and Customer classes next. The EmailAddress is an em-
beddable class with a single value field. We need to ask Roo to ignore the fact that
value is a reserved word for some SQL databases. We also provide a column name of
email since that will be more descriptive for anyone inspecting the database table. Using
this embeddable in a field declarations, we specify it as an embedded field.

embeddable --class ~.domain.EmailAddress
field string --fieldName value --notNull --column email --permitReservedWords
entity jpa --class ~.domain.Customer --activeRecord false
field string --fieldName firstName --notNull
field string --fieldName lastName --notNull
field embedded --fieldName emailAddress --type ~.domain.EmailAddress
field set --fieldName addresses --type ~.domain.Address

The last command creates a many-to-many relationship to the address table, allowing
us to provide a number of addresses for each customer. This is the resulting Customer
class:

package com.oreilly.springdata.roo.domain;

import java.util.HashSet;
import java.util.Set;
import javax.persistence.CascadeType;
import javax.persistence.Embedded;
import javax.persistence.ManyToMany;
import javax.validation.constraints.NotNull;
import org.springframework.roo.addon.javabean.RooJavaBean;
import org.springframework.roo.addon.jpa.entity.RooJpaEntity;
import org.springframework.roo.addon.tostring.RooToString;

@RooJavaBean
@RooToString
@RooJpaEntity
public class Customer {

 @NotNull
 private String firstName;

 @NotNull
 private String lastName;

 @Embedded
 private EmailAddress emailAddress;

A Spring Roo JPA Repository Example | 149

 @ManyToMany(cascade = CascadeType.ALL)
 private Set<Address> addresses = new HashSet<Address>();
}

For completeness, we’ll show the EmailAddress class as well:

package com.oreilly.springdata.roo.domain;

import javax.persistence.Column;
import javax.persistence.Embeddable;
import javax.validation.constraints.NotNull;
import org.springframework.roo.addon.javabean.RooJavaBean;
import org.springframework.roo.addon.tostring.RooToString;

@RooJavaBean
@RooToString
@Embeddable
public class EmailAddress {

 @NotNull
 @Column(name = "email")
 private String value;
}

The most interesting part of this class is that it is @Embeddable and that we have defined
the value property to be stored in a database column named email.

Defining the Repositories
With the entities in place, we can now create the JPA repositories. We create one
repository for each entity.

repository jpa --interface ~.repository.CustomerRepository --entity ~.domain.Customer
repository jpa --interface ~.repository.AddressRepository --entity ~.domain.Address

At this point we could also create a service layer, but since this is such a simple appli-
cation, we’ll skip this step.

Creating the Web Layer
Now we need some really simple web pages so we can enter and modify our customer
and address data. We’ll just stick with the screens generated by Roo.

web mvc setup
web mvc scaffold --class ~.web.CustomerController --backingType ~.domain.Customer
web mvc scaffold --class ~.web.AddressController --backingType ~.domain.Address

There is one thing we have to do. Roo doesn’t know how to map the EmailAddress class
between the String representation used for web pages and the EmailAddress type used
for persistence. We need to add converters to the ApplicationConversionServiceFac
toryBean that Roo generated; Example 9-3 shows how.

150 | Chapter 9: Persistence Layers with Spring Roo

Example 9-3. The generated ApplicationConversionServiceFactoryBean.java with converters added

package com.oreilly.springdata.roo.web;

import org.springframework.core.convert.converter.Converter;
import org.springframework.format.FormatterRegistry;
import org.springframework.format.support.FormattingConversionServiceFactoryBean;
import org.springframework.roo.addon.web.mvc.controller.converter.RooConversionService;

import com.oreilly.springdata.roo.domain.EmailAddress;

/**
 * A central place to register application converters and formatters.
 */
@RooConversionService
public class ApplicationConversionServiceFactoryBean
 extends FormattingConversionServiceFactoryBean {

 @Override
 protected void installFormatters(FormatterRegistry registry) {
 super.installFormatters(registry);
 // Register application converters and formatters
 registry.addConverter(getStringToEmailAddressConverter());
 registry.addConverter(getEmailAddressConverterToString());
 }

 public Converter<String, EmailAddress> getStringToEmailAddressConverter() {
 return new Converter<String, EmailAddress>() {
 @Override
 public EmailAddress convert(String source) {
 EmailAddress emailAddress = new EmailAddress();
 emailAddress.setAddress(source);
 return emailAddress;
 }
 };
 }

 public Converter<EmailAddress, String> getEmailAddressConverterToString() {
 return new Converter<EmailAddress, String>() {
 @Override
 public String convert(EmailAddress source) {
 return source.getAddress();
 }
 };
 }
}

Running the Example
Now we are ready to build and deploy this example. For Spring Tool Suite, just drag
the application to the tc server instance and start the server. If you use the command
line, simply exit the Roo shell and from the command line run the following Maven
commands:

A Spring Roo JPA Repository Example | 151

mvn clean package
mvn tomcat:run

You should now be able to open a browser and navigate to http://localhost:8080/roo
-spring-data-jpa/ and see the screen shown in Figure 9-5.

Figure 9-5. The JPA application

Our application is now complete, and we can add some addresses and then a customer
or two.

If you get tired of losing your data every time you restart your app server,
you can change the schema creation properties in src/main/resources/
META-INF/persistence.xml. Change <property name="hibernate.
hbm2ddl.auto" value="create" /> to have a value of "update".

A Spring Roo MongoDB Repository Example
Since Spring Data includes support for MongoDB repositories, we can use MongoDB
as a persistence option when using Roo. We just won’t have the option of using the
active record style for the persistence layer; we can only use the repositories. Other than
this difference, the process is very much the same as for a JPA solution.

152 | Chapter 9: Persistence Layers with Spring Roo

Creating the Project
If you are using Spring Tool Suite, then just follow the aforementioned instructions to
create a new Spring Roo project. On the “Create a new Roo Project” dialog screen,
provide the following settings:

• Project name: roo-spring-data-mongo

• Top level package name: com.oreilly.springdata.roo

• Packaging: WAR

When using the command-line Roo shell, create a roo-spring-data-mongo directory.
Change to this new directory and then start the Roo Shell as previously explained. At
the roo> prompt, enter the following command:

project --topLevelPackage com.oreilly.springdata.roo ↪
 --projectName roo-spring-data-mongo --java 6 --packaging WAR

Setting Up MongoDB Persistence
Setting up the persistence configuration for MongoDB is simple. We can just accept
the defaults. If you wish, you can provide a host, port, username, and password, but
for a default local MongoDB installation the defaults work well. So just enter the
following:

mongo setup

Creating the Entities
When creating the entities, we don’t have the option of using the active record style,
so there is no need to provide an --activeRecord parameter to opt out of it. Repositories
are the default, and the only option for the persistence layer with MongoDB. Again, we
start with the Address class:

entity mongo --class ~.domain.Address
field string --fieldName street --notNull
field string --fieldName city --notNull
field string --fieldName country --notNull

That looks very similar to the JPA example. When we move on to the Customer class,
the first thing you’ll notice that is different is that with MongoDB you don’t use an
embeddable class. That is available only for JPA. With MongoDB, you just create a plain
class and specify --rooAnnotations true to enable the @RooJavaBean support. To use
this class, you specify the field as other. Other than these minor differences, the entity
declaration is very similar to the JPA example:

class --class ~.domain.EmailAddress --rooAnnotations true
field string --fieldName value --notNull --permitReservedWords
entity mongo --class ~.domain.Customer
field string --fieldName firstName --notNull
field string --fieldName lastName --notNull

A Spring Roo MongoDB Repository Example | 153

field other --fieldName emailAddress --type ~.domain.EmailAddress
field set --fieldName addresses --type ~.domain.Address

Defining the Repositories
We declare the MongoDB repositories the same way as the JPA repositories except for
the mongo keyword:

repository mongo --interface ~.repository.CustomerRepository ↪
 --entity ~.domain.Customer
repository mongo --interface ~.repository.AddressRepository --entity ~.domain.Address

Creating the Web Layer
The web layer is exactly the same as for the JPA example:

web mvc setup
web mvc scaffold --class ~.web.CustomerController --backingType ~.domain.Customer
web mvc scaffold --class ~.web.AddressController --backingType ~.domain.Address

Don’t forget to add the converters to the ApplicationConversionServiceFactoryBean
like we did for JPA in Example 9-3.

Running the Example
Now we are ready to build and deploy this example. This is again exactly the same as
the JPA example, except that we need to have MongoDB running on our system. See
Chapter 6 for instructions on how to install and run MongoDB.

For Spring Tool Suite, just drag the application to the tc server instance and start the
server. If you use the command line, simply exit the Roo shell and from the command
line run the following Maven commands:

mvn clean package
mvn tomcat:run

You should now be able to open a browser and navigate to http://localhost:8080/roo
-spring-data-mongo/ and see the screen in Figure 9-6.

Our second example application is now complete, and we can add some addresses and
then a customer or two.

154 | Chapter 9: Persistence Layers with Spring Roo

Figure 9-6. The MongoDB application

A Spring Roo MongoDB Repository Example | 155

CHAPTER 10

REST Repository Exporter

When you are working with the Spring Data repository abstraction (see Chapter 2 for
details), the repository interface managing an entity becomes the central point of access
for it. Using the Spring Data REST repository exporter project, you can now export (as
the name suggests) these managed entities via a REST web service to easily interact
with the data. The exporter mechanism will transparently expose a resource per repos-
itory, map CRUD operations onto HTTP methods for that resource, and provide a
means to execute query methods exposed on the repository interface.

What Is REST?
Representational State Transfer (REST) is an architectural style initially described by
Roy Fielding in his dissertation analyzing styles of network-based software architec-
tures [Fielding00]. It is a generalization of the principles behind the HTTP protocol,
from which it derives the following core concepts:

Resources
Systems expose resources to other systems: an order, a customer, and so on.

Identifiers
These resources can be addressed through an identifier. In the HTTP world, these
identifiers are URIs.

Verbs
Each resource can be accessed and manipulated though a well-defined set of verbs.
These verbs have dedicated semantics and have to be used according to those. In
HTTP the commonly used verbs are GET, PUT, POST, DELETE, HEAD, and OPTIONS, as
well as the rather seldomly used (or even unused) ones, TRACE and CONNECT. Not
every resource has to support all of the verbs just listed, but it is required that you
don’t set up special verbs per resource.

Representations
A client never interacts with the resource directly but rather through representa-
tions of it. Representations are defined through media types, which clearly identify
the structure of the representation. Commonly used media types include rather

157

general ones like application/xml and application/json, and more structured ones
like application/atom+xml.

Hypermedia
The representations of a resource usually contain links to point to other resources,
which allows the client to navigate the system based on the resource state and the
links provided. This concept is described as Hypermedia as the Engine of Appli-
cation State (HATEOAS).

Web services built based on these concepts have proven to be scalable, reliable, and
evolvable. That’s why REST web services are a ubiquitous means to integrate software
systems. While Fielding’s dissertation is a nice read, we recommend also looking at
REST in Practice, by Jim Webber, Savas Parastatidis, and Ian Robinson. It provides
a very broad, detailed, and real-world-example-driven introduction to the topic
[WePaRo10].

We will have a guided tour through that functionality by walking through the rest
module of the sample project. It is a Servlet 3.0−compliant, Spring-based web applica-
tion. The most important dependency of the project is the spring-data-rest-webmvc
library, which provides Spring MVC integration to export Spring Data JPA repositories
to the Web. Currently, it works for JPA-backed repositories only, but support for other
stores is on the roadmap already. The basic Spring infrastructure of the project is very
similar to the one in Chapter 4, so if you haven’t had a glance at that chapter already,
please do so now to understand the basics.

The Sample Project
The easiest way to run the sample app is from the command line using the Maven Jetty
plug-in. Jetty is a tiny servlet container capable of running Servlet 3.0 web applications.
The Maven plug-in will allow you to bootstrap the app from the module folder using
the command shown in Example 10-1.

Example 10-1. Running the sample application from the command line

$ mvn jetty:run -Dspring.profiles.active=with-data

[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building Spring Data Book - REST exporter 1.0.0.BUILD-SNAPSHOT
[INFO] --
…
[INFO] <<< jetty-maven-plugin:8.1.5.v20120716:run (default-cli) @ spring-data-book-rest <<<
[INFO]
[INFO] --- jetty-maven-plugin:8.1.5.v20120716:run (default-cli) @ spring-data-book-rest ---
[INFO] Configuring Jetty for project: Spring Data Book - REST exporter
[INFO] webAppSourceDirectory …/spring-data-book/rest/src/main/webapp does not exist. \
 Defaulting to …/spring-data-book/rest/src/main/webapp
[INFO] Reload Mechanic: automatic

158 | Chapter 10: REST Repository Exporter

http://jetty.codehaus.org

[INFO] Classes = …/spring-data-book/rest/target/classes
[INFO] Context path = /
[INFO] Tmp directory = …/spring-data-book/rest/target/tmp
[INFO] Web defaults = org/eclipse/jetty/webapp/webdefault.xml
[INFO] Web overrides = none
[INFO] web.xml file = null
[INFO] Webapp directory = …/spring-data-book/rest/src/main/webapp
2012-07-31 17:58:01.709:INFO:oejs.Server:jetty-8.1.5.v20120716
2012-07-31 17:58:03.769:INFO:oejpw.PlusConfiguration:No Transaction manager found \
 - if your webapp requires one, please configure one.
2012-07-31 17:58:10.641:INFO:/:Spring WebApplicationInitializers detected on classpath: \
 [com.oreilly.springdata.rest.RestWebApplicationInitializer@34cbbc24]
…
2012-07-31 17:58:16,032 INFO est.webmvc.RepositoryRestExporterServlet: 444 - \
 FrameworkServlet 'dispatcher': initialization started
…
2012-07-31 17:58:17,159 INFO est.webmvc.RepositoryRestExporterServlet: 463 - \
 FrameworkServlet 'dispatcher': initialization completed in 1121 ms
2012-07-31 17:58:17.179:INFO:oejs.AbstractConnector:Started SelectChannelConnector@
 0.0.0.0:8080
[INFO] Started Jetty Server

The first thing to notice here is that we pipe a JVM argument, spring.pro
files.active, into the execution. This populates the in-memory database with some
sample products, customers, and orders so that we actually have some data to interact
with. Maven now dumps some general activity information to the console. The next
interesting line is the one at 17:58:10, which tells us that Jetty has discovered a WebAp
plicationInitializer—our RestWebApplicationInitializer in particular. A WebAppli
cationInitializer is the API equivalent to a web.xml file, introduced in the Servlet API
3.0. It allows us to get rid of the XML-based way to configure web application infra-
structure components and instead use an API. Our implementation looks like Exam-
ple 10-2.

Example 10-2. The RestWebApplicationInitializer

public class RestWebApplicationInitializer implements WebApplicationInitializer {

 public void onStartup(ServletContext container) throws ServletException {

 // Create the 'root' Spring application context
 AnnotationConfigWebApplicationContext rootContext =
 new AnnotationConfigWebApplicationContext();
 rootContext.register(ApplicationConfig.class);

 // Manage the life cycle of the root application context
 container.addListener(new ContextLoaderListener(rootContext));

 // Register and map the dispatcher servlet
 DispatcherServlet servlet = new RepositoryRestExporterServlet();
 ServletRegistration.Dynamic dispatcher = container.addServlet("dispatcher", servlet);
 dispatcher.setLoadOnStartup(1);
 dispatcher.addMapping("/");

The Sample Project | 159

 }
}

First, we set up an AnnotationConfigWebApplicationContext and register the Applica
tionConfig JavaConfig class to be used as a Spring configuration later on. We register
that ApplicationContext wrapped inside ContextLoaderListener to the actual Servlet
Context. The context will invoke the listener later, which will cause the Application
Context to be bootstrapped in turn. The code so far is pretty much the equivalent of
registering a ContextLoaderListener inside a web.xml file, pointing it to an XML config
file, except that we don’t have to deal with XML and String-based locations but rather
type-safe references to configuration. The ApplicationContext configured will now
bootstrap an embedded database, the JPA infrastructure including a transaction man-
ager, and enable the repositories eventually. This process has already been covered in
“Bootstrapping the Sample Code” on page 44.

Right after that, we declare a RepositoryRestExporterServlet, which actually cares
about the tricky parts. It registers quite a bit of Spring MVC infrastructure components
and inspects the root application context for Spring Data repository instances. It will
expose HTTP resources for each of these repositories as long as they implement
CrudRepository. This is currently a limitation, which will be removed in later versions
of the module. We map the servlet to the servlet root so that the application will be
available via http://localhost:8080 for now.

Interacting with the REST Exporter
Now that we have bootstrapped the application, let’s see what we can actually do with
it. We will use the command-line tool curl to interact with the system, as it provides a
convenient way to trigger HTTP requests and displays responses in a way that we can
show here in the book nicely. However, you can, of course, use any other client capable
of triggering HTTP requests: command-line tools (like wget on Windows) or simply
your web browser of choice. Note that the latter will only allow you to trigger GET
requests through the URL bar. If you’d like to follow along with the more advanced
requests (POST, PUT, DELETE), we recommend a browser plug-in like the Dev HTTP Client
for Google Chrome. Similar tools are available for other browsers as well.

Let’s trigger some requests to the application, as shown in Example 10-3. All we know
right now is that we’ve deployed it to listen to http://localhost:8080, so let’s see what
this resource actually provides.

Example 10-3. Triggering the initial request using curl

$ curl -v http://localhost:8080

* About to connect() to localhost port 8080 (#0)
* Trying ::1... connected
* Connected to localhost (::1) port 8080 (#0)
> GET / HTTP/1.1
> User-Agent: curl/7.21.4 (universal-apple-darwin11.0) libcurl/7.21.4 OpenSSL/0.9.8r

160 | Chapter 10: REST Repository Exporter

http://bit.ly/PZ5lCt
http://bit.ly/PZ5lCt

 zlib/1.2.5
> Host: localhost:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Length: 242
< Content-Type: application/json
< Server: Jetty(8.1.5.v20120716)
<
{
 "links" : [{
 "rel" : "product",
 "href" : "http://localhost:8080/product"
 }, {
 "rel" : "order",
 "href" : "http://localhost:8080/order"
 }, {
 "rel" : "customer",
 "href" : "http://localhost:8080/customer"
 }]
}
* Connection #0 to host localhost left intact
* Closing connection #0

The first thing to notice here is that we triggered the curl command with the -v flag.
This flag activates verbose output, listing all the request and response headers alongside
the actual response data. We see that the server returns data of the content type appli
cation/json by default. The actual response body contains a set of links we can follow
to explore the application. Each of the links provided is actually derived from a Spring
Data repository available in the ApplicationContext. We have a CustomerRepository, a
ProductRepository, and an OrderRepository, so the relation type (rel) attributes are
customer, product, and order (the first part of the repository name beginning with a
lowercase character). The resource URIs are derived using that default as well. To cus-
tomize this behavior, you can annotate the repository interface with @RestResource,
which allows you to explicitly define path (the part of the URI) as well as the rel (the
relation type).

Links
The representation of a link is usually derived from the link element defined in the
Atom RFC. It basically consists of two attributes: a relation type (rel) and a hypertext
reference (href) . The former defines the actual semantics of the link (and thus has to
be documented or standardized), whereas the latter is actually opaque to the client. A
client will usually inspect a link’s response body for relation types and follow the links
with relation types it is interested in. So basically the client knows it will find all orders
behind links with a rel of order. The actual URI is not relevant. This structure results
in decoupling of the client and the server, as the latter tells the client where to go. This
is especially useful in case a URI changes or the server actually wants to point the client
to a different machine to load-balance requests.

The Sample Project | 161

http://tools.ietf.org/html/rfc4287

Let’s move on to inspecting the products available in the system. We know that the
products are exposed via the relation type product; thus, we follow the link with that
rel.

Accessing Products
Example 10-4 demonstrates how to access all products available in the system.

Example 10-4. Accessing products

$ curl http://localhost:8080/product

{ "content" : [{
 "price" : 499.00,
 "description" : "Apple tablet device",
 "name" : "iPad",
 "links" : [{
 "rel" : "self",
 "href" : "http://localhost:8080/product/1"
 }],
 "attributes" : {
 "connector" : "socket"
 }
 }, … , {
 "price" : 49.00,
 "description" : "Dock for iPhone/iPad",
 "name" : "Dock",
 "links" : [{
 "rel" : "self",
 "href" : "http://localhost:8080/product/3"
 }],
 "attributes" : {
 "connector" : "plug"
 }
 }],
 "links" : [{
 "rel" : "product.search",
 "href" : "http://localhost:8080/product/search"
 }]
}

Triggering the request to access all products returns a JSON representation containing
two major fields. The content field consists of a collection of all available products
rendered directly into the response. The individual elements contain the serialized
properties of the Product class as well as an artificial links container. This container
carries a single link with a relation type of self. The self type usually acts as a kind of
identifier, as it points to the resource itself. So we can access the iPad product directly
by following the link with the relation type self inside its representation (see Exam-
ple 10-5).

162 | Chapter 10: REST Repository Exporter

Example 10-5. Accessing a single product

$ curl http://localhost:8080/product/1

{ "price" : 499.00,
 "description" : "Apple tablet device",
 "name" : "iPad",
 "links" : [{
 "rel" : "self",
 "href" : "http://localhost:8080/product/1"
 }],
 "attributes" : {
 "connector" : "socket"
 }
}

To update a product, you simply issue a PUT request to the resource providing the new
content, as shown in Example 10-6.

Example 10-6. Updating a product

$ curl -v -X PUT -H "Content-Type: application/json" \
 -d '{ "price" : 469.00, \
 "name" : "Apple iPad" }' \
 http://localhost:8080/spring-data-book-rest/product/1

* About to connect() to localhost port 8080 (#0)
* Trying ::1...
* connected
* Connected to localhost (::1) port 8080 (#0)
> PUT /spring-data-book-rest/product/1 HTTP/1.1
> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r
 zlib/1.2.5
> Host: localhost:8080
> Accept: */*
> Content-Type: application/json
> Content-Length: 82
>
* upload completely sent off: 82 out of 82 bytes
< HTTP/1.1 204 No Content
< Server: Apache-Coyote/1.1
< Date: Fri, 31 Aug 2012 10:23:58 GMT

We set the HTTP method to PUT using the -X parameter and provide a Content-Type
header to indicate we’re sending JSON. We submit an updated price and name attribute
provided through the -d parameter. The server returns a 204 No Content to indicate
that the request was successful. Triggering another GET request to the product’s URI
returns the updated content, as shown in Example 10-7.

The Sample Project | 163

Example 10-7. The updated product

$ curl http://localhost:8080/spring-data-book-rest/product/1

{ "links" : [{
 "rel" : "self",
 "href" : "http://localhost:8080/spring-data-book-rest"
 }],
 "price" : 469.00,
 "description" : "Apple tablet device",
 "name" : "Apple iPad",
 "attributes" : {
 "connector" : "socket"
 }
}

The JSON representation of the collection resource also contained a links attribute,
which points us to a generic resource that will allow us to explore the query methods
exposed by the repository. The convention is using the relation type of the collection
resource (in our case, product) extended by .search. Let’s follow this link and see what
searches we can actually execute—see Example 10-8.

Example 10-8. Accessing available searches for products

$ curl http://localhost:8080/product/search

{ "links" : [{
 "rel" : "product.findByDescriptionContaining",
 "href" : "http://localhost:8080/product/search/findByDescriptionContaining"
 }, {
 "rel" : "product.findByAttributeAndValue",
 "href" : "http://localhost:8080/product/search/findByAttributeAndValue"
 }]
}

As you can see, the repository exporter exposes a resource for each of the query methods
declared in the ProductRepository interface. The relation type pattern is again based
on the relation type of the resource extended by the query method name, but we can
customize it using @RestResource on the query method. Since the JVM unfortunately
doesn’t support deriving the parameter names from interface methods, we have to
annotate the method parameters of our query methods with @Param and use named
parameters in our manual query method definition for findByAttributeAnd
Value(...). See Example 10-9.

Example 10-9. The PersonRepository interface

public interface ProductRepository extends CrudRepository<Product, Long> {

 Page<Product> findByDescriptionContaining(
 @Param("description") String description, Pageable pageable);

 @Query("select p from Product p where p.attributes[:attribute] = :value")
 List<Product> findByAttributeAndValue(

164 | Chapter 10: REST Repository Exporter

 @Param("attribute") String attribute, @Param("value") String value);
}

We can now trigger the second query method by following the product.findByAttri
buteAndValue link and invoking a GET request handing the matching parameters to the
server. Let’s search for products that have a connector plug, as shown in Example 10-10.

Example 10-10. Searching for products with a connector attribute of value plug

$ curl http://localhost:8080/product/search/findByAttributeAndValue?attribute=connector\
 /&value=plug

{ "results" : [{
 "price" : 49.00,
 "description" : "Dock for iPhone/iPad",
 "name" : "Dock",
 "_links" : [{
 "rel" : "self",
 "href" : "http://localhost:8080/product/3"
 }],
 "attributes" : {
 "connector" : "plug"
 }
 }],
 "links" : […]
}

Accessing Customers
Now that we’ve seen how to navigate through the products available and how to exe-
cute the finder methods exposed by the repository interface, let’s switch gears and have
a look at the customers registered in the system. Our original request to http://localhost:
8080 exposed a customer link (see Example 10-3). Let’s follow that link in Exam-
ple 10-11 and see what customers we find.

Example 10-11. Accessing customers (1 of 2)

$ curl -v http://localhost:8080/customer

* About to connect() to localhost port 8080 (#0)
* Trying ::1...
* connected
* Connected to localhost (::1) port 8080 (#0)
> GET /customer HTTP/1.1
> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r
 zlib/1.2.5
> Host: localhost:8080
> Accept: */*
>
< HTTP/1.1 500 Could not write JSON: No serializer found for class
 com.oreilly.springdata.rest.core.EmailAddress and no properties
 discovered to create BeanSerializer …
< Content-Type: text/html;charset=ISO-8859-1

The Sample Project | 165

< Cache-Control: must-revalidate,no-cache,no-store
< Content-Length: 16607
< Server: Jetty(8.1.5.v20120716)

Yikes, that doesn’t look too good. We’re getting a 500 Server Error response, indicat-
ing that something went wrong with processing the request. Your terminal output is
probably even more verbose, but the important lines are listed in Example 10-11 right
underneath the HTTP status code. Jackson (the JSON marshalling technology used by
Spring Data REST) seems to choke on serializing the EmailAddress value object. This
is due to the fact that we don’t expose any getters or setters, which Jackson uses to
discover properties to be rendered into the response.

Actually, we don’t even want to render the EmailAddress as an embedded object but
rather as a plain String value. We can achieve this by customizing the rendering using
the @JsonSerialize annotation provided by Jackson. We configure its using attribute
to the predefined ToStringSerializer.class, which will simply render the object by
calling the toString() method on the object.

All right, let’s give it another try (Example 10-12).

Example 10-12. Accessing customers (2 of 2)

$ curl -v http://localhost:8080/customer

* About to connect() to localhost port 8080 (#0)
* Trying ::1...
* connected
* Connected to localhost (::1) port 8080 (#0)
> GET /customer HTTP/1.1
> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r
 zlib/1.2.5
> Host: localhost:8080
> Accept: */*
>
< HTTP/1.1 500 Could not write JSON: Infinite recursion (StackOverflowError)
 (through reference chain: com.oreilly.springdata.rest.core.Address["copy"]
 ->com.oreilly.springdata.rest.core.Address["copy"]…
< Content-Type: text/html;charset=ISO-8859-1
< Cache-Control: must-revalidate,no-cache,no-store
< Content-Length: 622972
< Server: Jetty(8.1.5.v20120716)

Well, it’s not that much better, but at least we seem to get one step further. This time
the Jackson renderer complains about the Address class exposing a copy property, which
in turn causes a recursion. The reason for this issue is that the getCopy() method of
Address class follows the Java bean property semantics but is not a getter method in
the classic sense. Rather, it returns a copy of the Address object to allow us to easily
create a clone of an Address instance and assign it to an Order to shield against changes
to the Customer’s Address leaking into an already existing Order (see Example 4-7). So
we have two options here: we could either rename the method to not match the Java
bean property convention or add an annotation to tell Jackson to simply ignore the

166 | Chapter 10: REST Repository Exporter

property. We’ll choose the latter for now, as we don’t want to get into refactoring the
client code. Thus, we use the @JsonIgnore annotation to exclude the copy property from
rendering, as shown in Example 10-13.

Example 10-13. Excluding the copy property of the Address class from rendering

@Entity
public class Address extends AbstractEntity {

 private String street, city, country;

 …

 @JsonIgnore
 public Address getCopy() { … }
}

Having made this change, let’s restart the server and invoke the request again (Exam-
ple 10-14).

Example 10-14. Accessing customers after marshalling tweaks

$ curl http://localhost:8080/customer

{ "results" : [{
 "links" : [{
 "rel" : "self",
 "href" : "http://localhost:8080/customer/1"
 }],
 "lastname" : "Matthews",
 "emailAddress" : "dave@dmband.com",
 "firstname" : "Dave",
 "addresses" : [{
 "id" : 1,
 "street" : "27 Broadway",
 "city" : "New York",
 "country" : "United States"
 }, {
 "id" : 2,
 "street" : "27 Broadway",
 "city" : "New York",
 "country" : "United States"
 }]
 }, …],
 "links" : [{
 "rel" : "customer.search",
 "href" : "http://localhost:8080/customer/search"
 }],
 "page" {
 "number" : 1,
 "size" : 20,
 "totalPages" : 1,
 "totalElements" : 3
 }
}

The Sample Project | 167

As you can see, the entities can now be rendered correctly. We also find the expected
links section to point us to the available query methods for customers. What’s new,
though, is that we have an additional page attribute set in the returned JSON. It contains
the current page number (number), the requested page size (size, defaulted to 20 here),
the total number of pages available (totalPages), and the overall total number of ele-
ments available (totalElements).

These attributes appear due to the fact that our CustomerRepository extends PagingAnd
SortingRepository and thus allows accessing all customers on a page-by-page basis.
For more details on that, have a look at “Defining Repositories” on page 19. This allows
us to restrict the number of customers to be returned for the collection resource by
using page and limit parameters when triggering the request. As we have three cus-
tomers present, let’s request an artificial page size of one customer, as shown in Ex-
ample 10-15.

Example 10-15. Accessing the first page of customers

$ curl http://localhost:8080/customer?limit=1

{ "content" : […],
 "links" : [{
 "rel" : "customer.next",
 "href" : "http://localhost:8080/customer?page=2&limit=1"
 }, {
 "rel" : "customer.search",
 "href" : "http://localhost:8080/customer/search"
 }],
 "page" : {
 "number" : 1,
 "size" : 1,
 "totalPages" : 3,
 "totalElements" : 3
 }
}

Note how the metainformation provided alongside the single result changed. The
totalPages field now reflects three pages being available due to our selecting a page size
of one. Even better, the server indicates that we can navigate the customers to the next
page by following the customer.next link. It already includes the request parameters
needed to request the second page, so the client doesn’t need to construct the URI
manually. Let’s follow that link and see how the metadata changes while navigating
through the collection (Example 10-16).

Example 10-16. Accessing the second page of customers

$ curl http://localhost:8080/customer?page=2\&limit=1

{ "content" : […],
 "links" : [{
 "rel" : "customer.prev",
 "href" : "http://localhost:8080/customer?page=1&limit=1"

168 | Chapter 10: REST Repository Exporter

 }, {
 "rel" : "customer.next",
 "href" : "http://localhost:8080/customer?page=3&limit=1"
 }, {
 "rel" : "customer.search",
 "href" : "http://localhost:8080/customer/search"
 }],
 "page" : {
 "number" : 2,
 "size" : 1,
 "totalPages" : 3,
 "totalElements" : 3
 }
}

Note that you might have to escape the & when pasting the URI into the
console shown in Example 10-16. If you’re working with a dedicated
HTTP client, escaping is not necessary.

Besides the actual content returned, note how the number attribute reflects our move to
page two. Beyond that, the server detects that there is now a previous page available
and offers to navigate to it through the customer.prev link. Following the cus
tomer.next link a second time would result in the next representation not listing the
customer.next link anymore, as we have reached the end of the available pages.

Accessing Orders
The final root link relation to explore is order. As the name suggests, it allows us to
access the Orders available in the system. The repository interface backing the resource
is OrderRepository. Let’s access the resource and see what gets returned by the server
(Example 10-17).

Example 10-17. Accessing orders

$ curl http://localhost:8080/order

{ "content" : [{
 "billingAddress" : {
 "id" : 2,
 "street" : "27 Broadway",
 "city" : "New York",
 "country" : "United States"
 },
 "shippingAddress" : {
 "id" : 2,
 "street" : "27 Broadway",
 "city" : "New York",
 "country" : "United States"
 },
 "lineItems" : […]

The Sample Project | 169

 "links" : [{
 "rel" : "order.Order.customer",
 "href" : "http://localhost:8080/order/1/customer"
 }, {
 "rel" : "self",
 "href" : "http://localhost:8080/order/1"
 }],
 }],
 "links" : [{
 "rel" : "order.search",
 "href" : "http://localhost:8080/order/search"
 }],
 "page" : {
 "number" : 1,
 "size" : 20,
 "totalPages" : 1,
 "totalElements" : 1
 }
}

The response contains a lot of well-known patterns we already have discussed: a link
to point to the exposed query methods of the OrderRepository, and the nested content
field, which contains serialized Order objects, inlined Address objects, and LineItems.
Also, we see the pagination metadata due to OrderRepository implementing PagingAnd
SortingRepository.

The new thing to notice here is that the Customer instance held in the Order object is
not inline but instead pointed to by a link. This is because Customers are managed by
a Spring Data repository. Thus, they are exposed as subordinate resources of the
Order to allow for manipulating the assignment. Let’s follow that link and access the
Customer who triggered the Order, as shown in Example 10-18.

Example 10-18. Accessing the Customer who placed the Order

$ curl http://localhost:8080/order/1/customer

{ "links" : [{
 "rel" : "order.Order.customer.Customer",
 "href" : "http://localhost:8080/order/1/customer"
 }, {
 "rel" : "self",
 "href" : "http://localhost:8080/customer/1"
 }],
 "emailAddress" : "dave@dmband.com",
 "lastname" : "Matthews",
 "firstname" : "Dave",
 "addresses" : [{
 "street" : "27 Broadway",
 "city" : "New York",
 "country" : "United States"
 }, {
 "street" : "27 Broadway",
 "city" : "New York",

170 | Chapter 10: REST Repository Exporter

 "country" : "United States"
 }]
}

This call returns the detailed information of the linked Customer and provides two links.
The one with the order.Order.customer.Customer relation type points to the Customer
connection resource, whereas the self link points to the actual Customer resource.
What’s the difference here? The former represents the assignment of the Customer to
the order. We can alter this assignment by issuing a PUT request to the URI, and we
could unassign it by triggering a DELETE request to it. In our case, the DELETE call will
result in a 405 Method not allowed, as the JPA mapping requires a Customer to be map-
ped via the optional = false flag in the @ManyToOne annotation of the customer property.
If the relationship is optional, a DELETE request will just work fine.

Assume we discovered that it’s actually not Dave who placed the Order initially, but
Carter. How do we update the assignment? First, the HTTP method of choice is PUT,
as we already know the URI of the resource to manipulate. It wouldn’t really make
sense to put actual data to the server, since all we’d like to do is tell the server “this
existing Customer is the issuer of the Order.” Because the Customer is identified through
its URI, we’re going to PUT it to the server, setting the Content-Type request header to
text/uri-list so that the server knows what we send. See Example 10-19.

Example 10-19. Changing the Customer who placed an Order

$ curl -v -X PUT -H "Content-Type: text/uri-list" \
 -d "http://localhost:8080/customer/2" http://localhost:8080/order/1/customer

* About to connect() to localhost port 8080 (#0)
* Trying ::1...
* connected
* Connected to localhost (::1) port 8080 (#0)
> PUT /order/1/customer HTTP/1.1
> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
> Host: localhost:8080
> Accept: */*
> Content-Type: text/uri-list
> Content-Length: 32
>
* upload completely sent off: 32 out of 32 bytes
< HTTP/1.1 204 No Content
< Content-Length: 0
< Content-Type: application/octet-stream
< Server: Jetty(8.1.5.v20120716)

text/uri-list is a standardized media type to define the format of one or more URIs
being transferred. Note that we get a 204 No Content from the server, indicating that it
has accepted the request and completed the reassignment.

The Sample Project | 171

http://www.rfc-editor.org/rfc/rfc2483.txt

PART V

Big Data

CHAPTER 11

Spring for Apache Hadoop

Apache Hadoop is an open source project that originated in Yahoo! as a central com-
ponent in the development of a new web search engine. Hadoop’s architecture is based
on the architecture Google developed to implement its own closed source web search
engine, as described in two research publications that you can find here and here. The
Hadoop architecture consists of two major components: a distributed filesystem and
a distributed data processing engine that run on a large cluster of commodity servers.
The Hadoop Distributed File System (HDFS) is responsible for storing and replicating
data reliably across the cluster. Hadoop MapReduce is responsible for providing the
programming model and runtime that is optimized to execute the code close to where
the data is stored. The colocation of code and data on the same physical node is one
of the key techniques used to minimize the time required to process large amounts (up
to petabytes) of data.

While Apache Hadoop originated out of a need to implement a web search engine, it
is a general-purpose platform that can be used for a wide variety of large-scale data
processing tasks. The combination of open source software, low cost of commodity
servers, and the real-world benefits that result from analyzing large amounts of new
unstructured data sources (e.g., tweets, logfiles, telemetry) has positioned Hadoop to
be a de facto standard for enterprises looking to implement big data solutions.

In this chapter, we start by introducing the “Hello world” application of Hadoop,
wordcount. The wordcount application is written using the Hadoop MapReduce API.
It reads text files as input and creates an output file with the total count of each word
it has read. We will first show how a Hadoop application is traditionally developed and
executed using command-line tools and then show how this application can be devel-
oped as a standard Java application and configured using dependency injection. To
copy the input text files into HDFS and the resulting output file out of HDFS, we use
Spring for Apache Hadoop’s HDFS scripting features.

175

http://hadoop.apache.org
http://research.google.com/archive/gfs.html
http://research.google.com/archive/mapreduce.html

Challenges Developing with Hadoop
There are several challenges you will face when developing Hadoop applications. The
first challenge is the installation of a Hadoop cluster. While outside the scope of this
book, creating and managing a Hadoop cluster takes a significant investment of time,
as well as expertise. The good news is that many companies are actively working on
this front, and offerings such as Amazon’s Elastic Map Reduce let you get your feet wet
using Hadoop without significant upfront costs. The second challenge is that, very
often, developing a Hadoop application does not consist solely of writing a single
MapReduce, Pig, or Hive job, but rather it requires you to develop a complete data
processing pipeline. This data pipeline consists of the following steps:

1. Collecting the raw data from many remote machines or devices.

2. Loading data into HDFS, often a continuous process from diverse sources (e.g.,
application logs), and event streams.

3. Performing real-time analysis on the data as it moves through the system and is
loaded into HDFS.

4. Data cleansing and transformation of the raw data in order to prepare it for analysis.

5. Selecting a framework and programming model to write data analysis jobs.

6. Coordinating the execution of many data analysis jobs (e.g., workflow). Each in-
dividual job represents a step to create the final analysis results.

7. Exporting final analysis results from HDFS into structured data stores, such as a
relational database or NoSQL databases like MongoDB or Redis, for presentation
or further analysis.

Spring for Apache Hadoop along with two other Spring projects, Spring Integration
and Spring Batch, provide the basis for creating a complete data pipeline solution that
has a consistent configuration and programming model. While this topic is covered in
Chapter 13, in this chapter we must start from the basics: how to interact with HDFS
and MapReduce, which in itself provides its own set of challenges.

Command-line tools are currently promoted in Hadoop documentation and training
classes as the primary way to interact with HDFS and execute data analysis jobs. This
feels like the logical equivalent of using SQL*Plus to interact with Oracle. Using com-
mand-line tools can lead you down a path where your application becomes a loosely
organized collection of bash, Perl, Python, or Ruby scripts. Command-line tools also
require you to create ad-hoc conventions to parameterize the application for different
environments and to pass information from one processing step to another. There
should be an easy way to interact with Hadoop programmatically, as you would with
any other filesystem or data access technology.

Spring for Apache Hadoop aims to simplify creating Hadoop-based applications in
Java. It builds upon the Spring Framework to provide structure when you are writing
Hadoop applications. It uses the familiar Spring-based configuration model that lets

176 | Chapter 11: Spring for Apache Hadoop

http://en.wikipedia.org/wiki/Data_cleansing

you take advantage of the powerful configuration features of the Spring container, such
as property placeholder replacement and portable data access exception hierarchies.
This enables you to write Hadoop applications in the same style as you would write
other Spring-based applications.

Hello World
The classic introduction to programming with Hadoop MapReduce is the wordcount
example. This application counts the frequency of words in text files. While this sounds
simple to do using Unix command-line utilities such as sed, awk, or wc, what compels
us to use Hadoop for this is how well this problem can scale up to match Hadoop’s
distributed nature. Unix command-line utilities can scale to many megabytes or per-
haps a few gigabytes of data. However, they are a single process and limited by the disk
transfer rates of a single machine, which are on the order of 100 MB/s. Reading a 1 TB
file would take about two and a half hours. Using Hadoop, you can scale up to hundreds
of gigabytes, terabytes, or even petabytes of data by distributing the data across the
HDFS cluster. A 1 TB dataset spread across 100 machines would reduce the read time
to under two minutes. HDFS stores parts of a file across many nodes in the Hadoop
cluster. The MapReduce code that represents the logic to perform on the data is sent
to the nodes where the data resides, executing close to the data in order to increase the
I/O bandwidth and reduce latency of the overall job. This stage is the “Map” stage in
MapReduce. To join the partial results from each node together, a single node in the
cluster is used to “Reduce” the partial results into a final set of data. In the case of the
wordcount example, the word counts accumulated on individual machines are com-
bined into the final list of word frequencies.

The fun part of running wordcount is selecting some sample text to use as input. While
it was surely not the intention of the original authors, Project Gutenberg provides an
easily accessible means of downloading large amounts of text in the form of public
domain books. Project Gutenberg is an effort to digitize the full text of public domain
books and has over 39,000 books currently available. You can browse the project web-
site and download a few classic texts using wget. In Example 11-1, we are executing
the command in the directory /tmp/gutenberg/download.

Example 11-1. Using wget to download books for wordcount

wget -U firefox http://www.gutenberg.org/ebooks/4363.txt.utf-8

Now we need to get this data into HDFS using a HDFS shell command.

Before running the shell command, we need an installation of Ha-
doop. A good guide to setting up your own Hadoop cluster on a single
machine is described in Michael Noll’s excellent online tutorial.

Hello World | 177

http://en.wikipedia.org/wiki/Wc_%28Unix%29
http://hadoop.apache.org/common/docs/r1.0.3/file_system_shell.html
http://hadoop.apache.org/common/docs/r1.0.3/file_system_shell.html
http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster

We invoke an HDFS shell command by calling the hadoop command located in the
bin directory of the Hadoop distribution. The Hadoop command-line argument dfs
lets you work with HDFS and in turn is followed by traditional file commands and
arguments, such as cat or chmod. The command to copy files from the local filesystem
into HDFS is copyFromLocal, as shown in Example 11-2.

Example 11-2. Copying local files into HDFS

hadoop dfs -copyFromLocal /tmp/gutenberg/download /user/gutenberg/input

To check if the files were stored in HDFS, use the ls command, as shown in Exam-
ple 11-3.

Example 11-3. Browsing files in HDFS

hadoop dfs -ls /user/gutenberg/input

To run the wordcount application, we use the example jar file that ships as part of the
Hadoop distribution. The arguments for the application is the name of the application
to run—in this case, wordcount—followed by the HDFS input directory and output
directory, as shown in Example 11-4.

Example 11-4. Running wordcount using the Hadoop command-line utility

hadoop jar hadoop-examples-1.0.1.jar wordcount /user/gutenberg/input
 /user/gutenberg/output

After issuing this command, Hadoop will churn for a while, and the results will be
placed in the directory /user/gutenberg/output. You can view the output in HDFS using
the command in Example 11-5.

Example 11-5. View the output of wordcount in HDFS

hadoop dfs -cat /user/gutenberg/output/part-r-00000

Depending on how many input files you have, there may be more than one output file.
By default, output filenames follow the scheme shown in Example 11-5 with the last
set of numbers incrementing for each additional file that is output. To copy the results
from HDFS onto the local filesystem, use the command in Example 11-6.

Example 11-6. View the output of wordcount in HDFS

hadoop dfs -getmerge /user/gutenberg/output /tmp/gutenberg/output/wordcount.txt

If there are multiple output files in HDFS, the getmerge option merges them all into a
single file when copying the data out of HDFS to the local filesystem. Listing the file
contents shows the words in alphabetical order followed by the number of times they
appeared in the file. The superfluous-looking quotes are an artifact of the implemen-
tation of the MapReduce code that tokenized the words. Sample output of the word-
count application output is shown in Example 11-7.

178 | Chapter 11: Spring for Apache Hadoop

Example 11-7. Partial listing of the wordcount output file

> cat /tmp/gutenberg/output/wordcount.txt
A 2
"AWAY 1
"Ah, 1
"And 2
"Another 1
…
"By 2
"Catholicism" 1
"Cease 1
"Cheers 1
…

In the next section, we will peek under the covers to see what the sample application
that is shipped as part of the Hadoop distribution is doing to submit a job to Hadoop.
This will help you understand what’s needed to develop and run your own application.

Hello World Revealed
There are a few things going on behind the scenes that are important to know if you
want to develop and run your own MapReduce applications and not just the ones that
come out of the box. To get an understanding of how the example applications work,
start off by looking in the META-INF/manifest.mf file in hadoop-examples.jar. The
manifest lists org.apache.hadoop.examples.ExampleDriver as the main class for Java to
run. ExampleDriver is responsible for associating the first command-line argument,
wordcount, with the Java class org.apache.hadoop.examples.Wordcount and executing
the main method of Wordcount using the helper class ProgramDriver. An abbreviated
version of ExampleDriver is shown in Example 11-8.

Example 11-8. Main driver for the out-of-the-box wordcount application

public class ExampleDriver {

 public static void main(String... args){

 int exitCode = -1;
 ProgramDriver pgd = new ProgramDriver();

 try {
 pgd.addClass("wordcount", WordCount.class,
 "A map/reduce program that counts the words in the input files.");
 pgd.addClass("randomwriter", RandomWriter.class,
 "A map/reduce program that writes 10GB of random data per node.");

 // additional invocations of addClass excluded that associate keywords
 // with other classes

 exitCode = pgd.driver(args);
 } catch(Throwable e) {

Hello World Revealed | 179

 e.printStackTrace();
 }

 System.exit(exitCode);
 }
}

The WordCount class also has a main method that gets invoked not directly by the JVM
when starting, but when the driver method of ProgramDriver is invoked. The Word
Count class is shown in Example 11-9.

Example 11-9. The wordcount main method invoked by the ProgramDriver

public class WordCount {

 public static void main(String... args) throws Exception {

 Configuration conf = new Configuration();
 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();

 if (otherArgs.length != 2) {
 System.err.println("Usage: wordcount <in> <out>");
 System.exit(2);
 }

 Job job = new Job(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

This gets at the heart of what you have to know in order to configure and execute your
own MapReduce applications. The necessary steps are: create a new Hadoop Configu
ration object, create a Job object, set several job properties, and then run the job using
the method waitforCompletion(…). The Mapper and Reducer classes form the core of the
logic to write when creating your own application.

While they have rather generic names, TokenizerMapper and IntSumReducer are static
inner classes of the WordCount class and are responsible for counting the words and
summing the total counts. They’re demonstrated in Example 11-10.

Example 11-10. The Mapper and Reducer for the out-of-the-box wordcount application

public class WordCount {

 public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{

180 | Chapter 11: Spring for Apache Hadoop

 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {

 StringTokenizer itr = new StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
 }

 public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {

 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {
 sum += val.get();
 }

 result.set(sum);
 context.write(key, result);
 }
 }

 // … main method as shown before
}

Since there are many out-of-the-box examples included in the Hadoop distribution,
the ProgramDriver utility helps to specify which Hadoop job to run based off the first
command-line argument. You can also run the WordCount application as a standard Java
main application without using the ProgramDriver utility. A few minor modifications
related to command-line argument handling are all that you need. The modified Word
Count class is shown in Example 11-11.

Example 11-11. A standalone wordcount main application

public class WordCount {

 // ... TokenizerMapper shown before
 // ... IntSumReducer shown before

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

Hello World Revealed | 181

 if (args.length != 2) {
 System.err.println("Usage: <in> <out>");
 System.exit(2);
 }

 Job job = new Job(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

The sample application for this section is located in the directory ./hadoop/word-
count. A Maven build file for WordCount application is also provided; this lets you run
the WordCount application as part of a regular Java application, independent of using
the Hadoop command-line utility. Using Maven to build your application and run a
standard Java main application is the first step toward treating the development and
deployment of Hadoop applications as regular Java applications, versus one that re-
quires a separate Hadoop command-line utility to execute. The Maven build uses the
Appassembler plug-in to generate Unix and Windows start scripts and to collect all the
required dependencies into a local lib directory that is used as the classpath by the
generated scripts.

To rerun the previous WordCount example using the same output direction, we must
first delete the existing files and directory, as Hadoop does not allow you to write to a
preexisting directory. The command rmr in the HDFS shell achieves this goal, as you
can see in Example 11-12.

Example 11-12. Removing a directory and its contents in HDFS

hadoop dfs -rmr /user/gutenberg/output

To build the application, run Appassembler’s assemble target and then run the gener-
ated wordcount shell script (Example 11-13).

Example 11-13. Building, running, and viewing the output of the standalone wordcount application

$ cd hadoop/wordcount
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/wordcount hdfs://localhost:9000/user/gutenberg/input
 hdfs://localhost:9000/user/gutenberg/output

INFO: Total input paths to process : 1
INFO: Running job: job_local_0001
…

182 | Chapter 11: Spring for Apache Hadoop

http://mojo.codehaus.org/appassembler/appassembler-maven-plugin/

INFO: Map output records=65692

$ hadoop dfs -cat /user/gutenberg/output/part-r-00000
"A 2
"AWAY 1
"Ah, 1
"And 2
"Another 1
"Are 2
"BIG 1
…

One difference to using the Hadoop command line is that the directories in HDFS need
to be prefixed with the URL scheme hdfs:// along with the hostname and port of the
namenode. This is required because the Hadoop command line sets environment vari-
ables recognized by the Hadoop Configuration class that prepend this information to
the paths passed in as command-line arguments. Note that other URL schemes for
Hadoop are available. The webhdfs scheme is very useful because it provides an HTTP-
based protocol to communicate with HDFS that does not require the client (our ap-
plication) and the HDFS server to use the exact same version (down to the minor point
release) of the HDFS libraries.

Hello World Using Spring for Apache Hadoop
If you have been reading straight through this chapter, you may well be wondering,
what does all this have to do with Spring? In this section, we start to show the features
that Spring for Apache Hadoop provides to help you structure, configure, and run
Hadoop applications. The first feature we will examine is how to use Spring to configure
and run Hadoop jobs so that you can externalize application parameters in separate
configuration files. This lets your application easily adapt to running in different envi-
ronments—such as development, QA, and production—without requiring any code
changes.

Using Spring to configure and run Hadoop jobs lets you take advantage of Spring’s rich
application configuration features, such as property placeholders, in the same way you
use Spring to configure and run other applications. The additional effort to set up a
Spring application context might not seem worth it for such a simple application as
wordcount, but it is rare that you’ll build such simple applications. Applications will
typically involve chaining together several HDFS operations and MapReduce jobs (or
equivalent Pig and Hive scripts). Also, as mentioned in “Challenges Developing with
Hadoop” on page 176, there are many other development activities that you need to
consider in creating a complete data pipeline solution. Using Spring for Apache Hadoop
as a basis for developing Hadoop applications gives us a foundation to build upon and
to reuse components as our application complexity grows.

Let’s start by running the version of WordCount developed in the previous section inside
of the Spring container. We use the XML namespace for Hadoop to declare the location

Hello World Using Spring for Apache Hadoop | 183

of the namenode and the minimal amount of information required to define a
org.apache.hadoop.mapreduce.Job instance. (See Example 11-14.)

Example 11-14. Declaring a Hadoop job using Spring’s Hadoop namespace

<configuration>
 fs.default.name=hdfs://localhost:9000
</configuration>

<job id="wordcountJob"
 input-path="/user/gutenberg/input"
 output-path="/user/gutenberg/output"
 mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"
 reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/>

<job-runner id="runner" job="wordcountJob" run-at-startup="true"/>

This configuration will create a singleton instance of an org.apache.hadoop.mapre
duce.Job managed by the Spring container. Some of the properties that were set on the
job class programmatically in the previous example can be inferred from the class sig-
nature of the Mapper and Reducer. Spring can determine that outputKeyClass is of the
type org.apache.hadoop.io.Text and that outputValueClass is of type org.apache
.hadoop.io.IntWritable, so we do not need to set these properties explicitly. There are
many other job properties you can set that are similar to the Hadoop command-line
options (e.g., combiner, input format, output format, and general job key/value prop-
erties). Use XML schema autocompletion in Eclipse or another editor to see the various
options available, and also refer to the Spring for Apache Hadoop reference documen-
tation for more information. Right now, the namenode location, input, and output
paths are hardcoded. We will extract them to an external property file shortly.

Similar to using the Hadoop command line to run a job, we don’t need to specify the
URL scheme and namenode host and port when specifying the input and output paths.
The <configuration/> element defines the default URL scheme and namenode infor-
mation. If you wanted to use the webhdfs protocol, then you simply need to set the value
of the key fs.default.name to webhdfs://localhost. You can also specify values for
other Hadoop configuration keys, such as dfs.permissions, hadoop.job.ugi,
mapred.job.tracker, and dfs.datanode.address.

To launch a MapReduce job when a Spring ApplicationContext is created, use the utility
class JobRunner to reference one or more managed Job objects and set the run-at-
startup attribute to true. The main application class, which effectively takes the place
of org.apache.hadoop.examples.ExampleDriver, is shown in Example 11-15. By default,
the application looks in a well-known directory for the XML configuration file, but we
can override this by providing a command-line argument that references another con-
figuration location.

184 | Chapter 11: Spring for Apache Hadoop

Example 11-15. Main driver to custom wordcount application managed by Spring

public class Main {

 private static final String[] CONFIGS = new String[] {
 "META-INF/spring/hadoop-context.xml" };

 public static void main(String[] args) {
 String[] res = (args != null && args.length > 0 ? args : CONFIGS);
 AbstractApplicationContext ctx = new ClassPathXmlApplicationContext(res);
 // shut down the context cleanly along with the VM
 ctx.registerShutdownHook();
 }
}

The sample code for this application is located in ./hadoop/wordcount-spring-basic. You
can build and run the application just like in the previous sections, as shown in Exam-
ple 11-16. Be sure to remove the output files in HDFS that were created from running
wordcount in previous sections.

Example 11-16. Building and running a basic Spring-based wordcount application

$ hadoop dfs -rmr /user/gutenberg/output
$ cd hadoop/wordcount-spring-basic
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/wordcount

Now that the Hadoop job is a Spring-managed object, it can be injected into any other
object managed by Spring. For example, if we want to have the wordcount job launched
in a web application, we can inject it into a Spring MVC controller, as shown in Ex-
ample 11-17.

Example 11-17. Dependency injection of a Hadoop job in WebMVC controller

@Controller
public class WordController {
 private final Job mapReduceJob;

 @Autowired
 public WordService(Job mapReduceJob) {
 Assert.notNull(mapReducejob);
 this.mapReduceJob = mapReduceJob;
 }

 @RequestMapping(value = "/runjob", method = RequestMethod.POST)
 public void runJob() {
 mapReduceJob.waitForCompletion(false);
 }
}

To start and externalize the configuration parameters of the application, we use Spring’s
property-placeholder functionality and move key parameters to a configuration file
(Example 11-18).

Hello World Using Spring for Apache Hadoop | 185

Example 11-18. Declaring a parameterized Hadoop job using Spring’s Hadoop namespace

<context:property-placeholder location="hadoop-default.properties"/>

<configuration>
 fs.default.name=${hd.fs}
</configuration>

<job id="wordcountJob"
 input-path="${wordcount.input.path}"
 output-path="${wordcount.output.path}"
 mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"
 reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/>

<job-runner id="runner" job="wordcountJob" run-at-startup="true"/>

The variable names hd.fs, wordcount.input.path, and wordcount.output.path are speci-
fied in the configuration file hadoop-default.properties, as shown in Example 11-19.

Example 11-19. The property file, hadoop-default.properties, that parameterizes the Hadoop
application for the default development environment

hd.fs=hdfs://localhost:9000
wordcount.input.path=/user/gutenberg/input/
wordcount.output.path=/user/gutenberg/output/

This file is located in the src/main/resources directory so that it is made available on the
classpath by the build script. We also can create another configuration file, named
hadoop-qa.properties, which will define the location of the namenode as configured in
the QA environment. To run the example on the same machine, we change only the
name of the output path, as shown in Chapter 11. In a real QA environment, the lo-
cation of the HDFS cluster, as well as the HDFS input and output paths, would be
different.

Example 11-20. The property file, hadoop-qa.properties, that parameterizes the Hadoop application
for the QA environment

hd.fs=hdfs://localhost:9000
wordcount.input.path=/data/words/input
wordcount.output.path=/data/words/qa/output

To take advantage of Spring’s environment support, which enables easy switching be-
tween different sets of configuration files, we change the property-placeholder defini-
tion to use the variable ${ENV} in the name of the property file to load. By default, Spring
will resolve variable names by searching through JVM system properties and then en-
vironment variables. We specify a default value for the variable by using the syntax $
{ENV:<Default Value>}. In Example 11-21, if the shell environment variable, ENV, is not
set, the value default will be used for ${ENV} and the property file hadoop-default.prop
erties will be loaded.

186 | Chapter 11: Spring for Apache Hadoop

Example 11-21. Referencing different configuration files for different runtime envrionments

<context:property-placeholder location="hadoop-${ENV:default}.properties"/>

To run the application from the command line for the QA environment, run the com-
mands in Example 11-22. Notice how the shell environment variable (ENV) is set to qa.

Example 11-22. Building and running the intermediate Spring-based wordcount application in the
QA environment

$ hadoop dfs -copyFromLocal /tmp/gutenberg/download /user/gutenberg/input
$ hadoop dfs -rmr /user/gutenberg/qa/output
$ cd hadoop/wordcount-spring-intermediate
$ mvn clean package appassembler:assemble
$ export ENV=qa
$ sh ./target/appassembler/bin/wordcount

As we have seen over the course of these examples, when rerunning a Hadoop appli-
cation we always need to write out the results to an empty directory; otherwise, the
Hadoop job will fail. In the development cycle, it’s tedious to remember to do this
before launching the application each time, in particular when inside the IDE. One
solution is to always direct the output to a new directory name based on a timestamp
(e.g., /user/gutenberg/output/2012/6/30/14/30) instead of a static directory name.
Let’s see how we can use Spring’s HDFS scripting features to help us with this common
task.

Scripting HDFS on the JVM
When developing Hadoop applications, you will quite often need to interact with
HDFS. A common way to get started with it is to use the HDFS command-line shell.
For example, here’s how to get a list of the files in a directory:

hadoop dfs -ls /user/gutenberg/input

While that is sufficient for getting started, when writing Hadoop applications you often
need to perform more complex chains of filesystem operations. For example, you might
need to test if a directory exists; if it does, delete it, and copy in some new files. As a
Java developer, you might feel that adding this functionality into bash scripts is a step
backward. Surely there is a programmatic way to do this, right? Good news: there is.
It is the HDFS filesystem API. The bad news is that the Hadoop filesystem API is not
very easy to use. It throws checked exceptions and requires us to construct Path in-
stances for many of its method arguments, making the calling structure more verbose
and awkward than needed. In addition, the Hadoop filesystem API does not provide
many of the higher-level methods available from the command line, such as test and
chmod.

Spring for Apache Hadoop provides an intermediate ground. It provides a simple
wrapper for Hadoop’s FileSystem class that accepts Strings instead of Path arguments.
More importantly, it provides an FsShell class that mimics the functionality in the

Scripting HDFS on the JVM | 187

command- line shell but is meant to be used in a programmatic way. Instead of printing
out information to the console, FsShell methods return objects or collections that you
can inspect and use programmatically. The FsShell class was also designed to integrate
with JVM-based scripting languages, allowing you to fall back to a scripting style in-
teraction model but with the added power of using JRuby, Jython, or Groovy instead
of bash. Example 11-23 uses the FsShell from inside a Groovy script.

Example 11-23. Declaring a Groovy script to execute

<configuration>
 fs.default.name=hdfs://localhost:9000
</configuration>

<script location="org/company/basic-script.groovy"/>

The <script/> element is used to create an instance of FsShell, which is implicitly
passed into the Groovy script under the variable name fsh. The Groovy script is shown
in Example 11-24.

Example 11-24. Using a Groovy script to work with HDFS

srcDir = "/tmp/gutenberg/download/"

// use the shell (made available under variable fsh)
dir = "/user/gutenberg/input"
if (!fsh.test(dir)) {
 fsh.mkdir(dir)
 fsh.copyFromLocal(srcDir, dir)
 fsh.chmod(700, dir)
}

Additional options control when the script gets executed and how it is evaluated. To
avoid executing the script at startup, set run-at-startup="false" in the script tag’s
element. To reevaluate the script in case it was changed on the filesystem, set evalu
ate="IF_MODIFIED" in the script tag’s element.

You can also parameterize the script that is executed and pass in variables that are
resolved using Spring’s property placeholder functionality, as shown in Example 11-25.

Example 11-25. Configuring a parameterized Groovy script to work with HDFS

<context:property-placeholder location="hadoop.properties"/>

<configuration>
 fs.default.name=${hd.fs}
</configuration>

<script id="setupScript" location="copy-files.groovy">
 <property name="localSourceFile" value="${localSourceFile}"/>
 <property name="inputDir" value="${inputDir}"/>
 <property name="outputDir" value="${outputDir}"/>
</script>

188 | Chapter 11: Spring for Apache Hadoop

The property file hadoop.properties and copy-files.groovy are shown in Examples
11-26 and 11-27, respectively.

Example 11-26. Property file containing HDFS scripting variables

hd.fs=hdfs://localhost:9000
localSourceFile=data/apache.log
inputDir=/user/gutenberg/input/word/
outputDir=
 #{T(org.springframework.data.hadoop.util.PathUtils).format('/output/%1$tY/%1$tm/%1$td')}

Spring for Apache Hadoop also provides a PathUtils class that is useful for creating
time-based directory paths. Calling the static format method will generate a time-based
path, based on the current date, that uses java.util.Formatter’s convention for for-
matting time. You can use this class inside Java but also reference it inside configuration
properties by using Spring’s expression langauge, SpEL. The syntax of SpEL is similar
to Java, and expressions are generally just one line of code that gets evaluated. Instead
of using the syntax ${...} to reference a variable, use the syntax #{...} to evaluate an
expression. In SpEL, the special ‘T’ operator is used to specify an instance of a
java.lang.Class, and we can invoke static methods on the ‘T’ operator.

Example 11-27. Parameterized Groovy script to work with HDFS

if (!fsh.test(hdfsInputDir)) {
 fsh.mkdir(hdfsInputDir);
 fsh.copyFromLocal(localSourceFile, hdfsInputDir);
 fsh.chmod(700, hdfsInputDir)
}
if (fsh.test(hdfsOutputDir)) {
 fsh.rmr(hdfsOutputDir)
}

Similar to how FsShell makes the command-line HDFS shell operations easily available
in Java or JVM scripting languages, the class org.springframework.data
.hadoop.fs.DistCp makes the Hadoop command-line distcp operations easily avail-
able. The distcp utility is used for copying large amounts of files within a single Hadoop
cluster or between Hadoop clusters, and leverages Hadoop itself to execute the copy
in a distributed manner. The distcp variable is implicitly exposed to the script as shown
in Example 11-28, which demonstrates a script embedded inside of the <hdp:script/
> element and not in a separate file.

Example 11-28. Using distcp inside a Groovy script

<configuration>
 fs.default.name=hdfs://localhost:9000
</configuration>

<script language="groovy">
 distcp.copy("${src}", "${dest}")
</script>

Scripting HDFS on the JVM | 189

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html

In this case, the Groovy script is embedded inside the XML instead of referencing an
external file. It is also important to note that we can use Spring’s property placeholder
functionality to reference variables such as ${src} and ${dst} inside the script, letting
you parameterize the scripts.

Combining HDFS Scripting and Job Submission
A basic Hadoop application will have some HDFS operations and some job submis-
sions. To sequence these tasks, you can use the pre-action and post-action attributes
of the JobRunner so that HDFS scription operations occur before and after the job sub-
mission. This is illustrated in Example 11-29.

Example 11-29. Using dependencies between beans to control execution order

<context:property-placeholder location="hadoop.properties"/>

<configuration>
 fs.default.name=${hd.fs}
</configuration>

<job id="wordcountJob"
 input-path="${wordcount.input.path}"
 output-path="${wordcount.output.path}"
 mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"
 reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/>

<script id="setupScript" location="copy-files.groovy">
 <property name="localSourceFile" value="${localSourceFile}"/>
 <property name="inputDir" value="${wordcount.input.path}"/>
 <property name="outputDir" value="${wordcount.output.path}"/>
</script>

<job-runner id="runner" run-at-startup="true"
 pre-action="setupScript"
 job="wordcountJob"/>

The pre-action attribute references the setupScript bean, which in turn references the
copy-files.groovy script that will reset the state of the system such that this application
can be run and rerun without any interaction on the command line required. Build and
run the application using the commands shown in Example 11-30.

Example 11-30. Building and running the intermediate Spring-based wordcount application

$ hadoop dfs -rmr /user/gutenberg/output
$ cd hadoop/wordcount-hdfs-copy
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/wordcount

Example 11-31 shows the JobRunner configured to execute several HDFS scripts before
and after the execution of multiple Hadoop jobs. The JobRunner also implements Java's
Callable interface, which makes executing the JobRunner easy using Java's Executor

190 | Chapter 11: Spring for Apache Hadoop

framework. While this approach is convenient for executing simple workflows, it only
goes so far as your application becomes more complex. Treating the chain of HDFS
and job operations as a first class concern is where the Hadoop-specific extensions to
Spring Batch come in handy. These extensions are discussed in the section “Hadoop
Workflows” on page 238.

Example 11-31. Configuring the JobRunner to execute multiple HDFS scripts and jobs

<job-runner id="runner"
 pre-action="setupScript1,setupScript"
 job="wordcountJob1,wordcountJob2"
 post-action="cleanupScript1,cleanupScript2"/>

Job Scheduling
Applications often require tasks to be scheduled and executed. The task could be send-
ing an email or running a time-consuming end-of-day batch process. Job schedulers are
a category of software that provides this functionality. As you might expect, there is a
wide range of product offerings in this category, from the general-purpose Unix cron
utility to sophisticated open source and commercial products such as Quartz, Control-
M, and Autosys. Spring provides several ways to schedule jobs. They include the JDK
Timer, integration with Quartz, and Spring’s own TaskScheduler. In this section, we
will show how you can use Quartz and Spring’s TaskScheduler to schedule and execute
Hadoop applications.

Scheduling MapReduce Jobs with a TaskScheduler
In this example, we will add task scheduling functionality to the application developed
in the previous section, which executed an HDFS script and the wordcount MapReduce
job. Spring’s TaskScheduler and Trigger interfaces provides the basis for scheduling
tasks that will run at some point in the future. Spring provides several implementations,
with common choices being ThreadPoolTaskScheduler and CronTrigger. We can use an
XML namespace, in addition to an annotation-based programming model, to configure
tasks to be scheduled with a trigger.

In the configuration shown in Example 11-32, we show the use of an XML namespace
that will invoke a method on any Spring-managed object—in this case, the call method
on the JobRunner instance. The trigger is a cron expression that will fire every 30 seconds
starting on the third second of the minute.

Example 11-32. Defining a TaskScheduler to execute HDFS scripts and MapReduce jobs

<!-- job definition as before -->
<job id="wordcountJob" ... />

<!-- script definition as before -->
<script id="setupScript" ... />

Job Scheduling | 191

<job-runner id="runner" pre-action="setupScript" job="wordcountJob"/>

<task:scheduled-tasks>
 <task:scheduled ref="runner" method="call" cron="3/30 * * * * ?"/>
</task:scheduled-tasks>

The default value of JobRunner's run-at-startup element is false so in this configuration
the HDFS scripts and Hadoop jobs will not execute when the application starts. Using
this configuration allows the scheduler to be the only component in the system that is
responsible for executing the scripts and jobs.

This sample application can be found in the directory hadoop/scheduling. When run-
ning the application, we can see the (truncated) output shown in Example 11-33, where
the timestamps correspond to those defined by the cron expression.

Example 11-33. Output from the scheduled wordcount application

removing existing input and output directories in HDFS...
copying files to HDFS...
23:20:33.664 [pool-2-thread-1] WARN o.a.hadoop.util.NativeCodeLoader
- Unable to load native-hadoop library for your platform...
23:20:33.689 [pool-2-thread-1] WARN org.apache.hadoop.mapred.JobClient
- No job jar file set. User classes may not be found.
23:20:33.711 [pool-2-thread-1] INFO o.a.h.m.lib.input.FileInputFormat
- Total input paths to process : 1
23:20:34.258 [pool-2-thread-1] INFO org.apache.hadoop.mapred.JobClient
- Running job: job_local_0001 ...
23:20:43.978 [pool-2-thread-1] INFO org.apache.hadoop.mapred.JobClient
- map 100% reduce 100%
23:20:44.979 [pool-2-thread-1] INFO org.apache.hadoop.mapred.JobClient
- Job complete: job_local_0001
23:20:44.982 [pool-2-thread-1] INFO org.apache.hadoop.mapred.JobClient
- Counters: 22
removing existing input and output directories in HDFS...
copying files to HDFS...
23:21:03.396 [pool-2-thread-1] INFO org.apache.hadoop.mapred.JobClient
- Running job: job_local_0001
23:21:03.397 [pool-2-thread-1] INFO org.apache.hadoop.mapred.JobClient
- Job complete: job_local_0001

That’s it! As you can see, the task namespace is simple to use, but it also has many
features (which we will not cover) related to the thread pool policies or delegation to
the CommonJ WorkManager. The Spring Framework reference documentation describes
these features in more detail.

Scheduling MapReduce Jobs with Quartz
Quartz is a popular open source job scheduler that includes many advanced features
such as clustering. In this example, we replace the Spring TaskScheduler used in the
previous example with Quartz. The Quartz scheduler requires you to define a Job (aka
a JobDetail), a Trigger, and a Scheduler, as shown in Example 11-34.

192 | Chapter 11: Spring for Apache Hadoop

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/scheduling.html
http://quartz-scheduler.org/

Example 11-34. Defining a Quartz scheduler to execute HDFS scripts and MapReduce jobs

<!-- job definition as before -->
<hdp:job id="wordcountJob" … />

<!-- script definition as before -->
<hdp:script id="setupScript" … />

<!-- simple job runner as before -->
<hdp:job-runner

<bean id="jobDetail"
 class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean">
 <property name="targetObject" ref="runner"/>
 <property name="targetMethod" value="run"/>
</bean>

<bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean">
 <property name="jobDetail" ref="jobDetail"/>
 <property name="cronExpression" value="3/30 * * * * ?"/>
</bean>

<bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
 <property name="triggers" ref="cronTrigger"/>
</bean>

Quartz’s JobDetail class encapsulates what code will execute when the trigger condi-
tion is satisfied. Spring’s helper class MethodInvokingJobDetailFactoryBean will create
a JobDetail object whose behavior is delegated to invoking the specified method on a
Spring-managed object. This application can be found in the directory hadoop/sched-
uling-quartz. Running the application gives similar output to the previous Spring Task
Scheduler-based example.

Job Scheduling | 193

CHAPTER 12

Analyzing Data with Hadoop

While the MapReduce programming model is at the heart of Hadoop, it is low-level
and as such becomes a unproductive way for developers to write complex analysis jobs.
To increase developer productivity, several higher-level languages and APIs have been
created that abstract away the low-level details of the MapReduce programming model.
There are several choices available for writing data analysis jobs. The Hive and Pig
projects are popular choices that provide SQL-like and procedural data flow-like lan-
guages, respectively. HBase is also a popular way to store and analyze data in HDFS.
It is a column-oriented database, and unlike MapReduce, provides random read and
write access to data with low latency. MapReduce jobs can read and write data in
HBase’s table format, but data processing is often done via HBase’s own client API. In
this chapter, we will show how to use Spring for Apache Hadoop to write Java appli-
cations that use these Hadoop technologies.

Using Hive
The previous chapter used the MapReduce API to analyze data stored in HDFS. While
counting the frequency of words is relatively straightforward with the MapReduce API,
more complex analysis tasks don’t fit the MapReduce model as well and thus reduce
developer productivity. In response to this difficulty, Facebook developed Hive as a
means to interact with Hadoop in a more declarative, SQL-like manner. Hive provides
a language called HiveQL to analyze data stored in HDFS, and it is easy to learn since
it is similar to SQL. Under the covers, HiveQL queries are translated into multiple jobs
based on the MapReduce API. Hive is now a top-level Apache project and is still heavily
developed by Facebook.

While providing a deep understanding of Hive is beyond the scope of this book, the
basic programming model is to create a Hive table schema that provides structure on
top of the data stored in HDFS. HiveQL queries are then pared by the Hive engine,
translating them into MapReduce jobs in order to execute the queries. HiveQL state-
ments can be submitted to the Hive engine through the command line or through a
component called the Hive Server, which provides access via JDBC, ODBC, or Thrift.

195

For more details on how to install, run, and develop with Hive and HiveQL, refer to
the project website as well as the book Programming Hive (O’Reilly).

As with MapReduce jobs, Spring for Apache Hadoop aims to simplify Hive program-
ming by removing the need to use command-line tools to develop and execute Hive
applications. Instead, Spring for Apache Hadoop makes it easy to write Java applica-
tions that connect to a Hive server (optionally embedded), create Hive Thrift clients,
and use Spring’s rich JDBC support (JdbcTemplate) via the Hive JDBC driver.

Hello World
As an introduction to using Hive, in this section we will perform a small analysis on
the Unix password file using the Hive command line. The goal of the analysis is to
create a report on the number of users of a particular shell (e.g., bash or sh). To install
Hive, download it from the main Hive website. After installing the Hive distribution,
add its bin directory to your path. Now, as shown in Example 12-1, we start the Hive
command-line console to execute some HiveQL commands.

Example 12-1. Analyzing a password file in the Hive command-line interface

$ hive
hive> drop table passwords;
hive> create table passwords (user string, passwd string, uid int, gid int,
 userinfo string, home string, shell string)
 > ROW FORMAT DELIMITED FIELDS TERMINATED BY ':' LINES TERMINATED BY '10';
hive> load data local inpath '/etc/passwd' into table passwords;
Copying data from file:/etc/passwd
Copying file: file:/etc/passwd
Loading data to table default.passwords
OK
hive> drop table grpshell;
hive> create table grpshell (shell string, count int);
hive> INSERT OVERWRITE TABLE grpshell SELECT p.shell, count(*)
 FROM passwords p GROUP BY p.shell;
Total MapReduce jobs = 1
Launching Job 1 out of 1
…
Total MapReduce CPU Time Spent: 1 seconds 980 msec
hive> select * from grpshell;
OK
/bin/bash 5
/bin/false 16
/bin/sh 18
/bin/sync 1
/usr/sbin/nologin 1
Time taken: 0.122 seconds

You can also put the HiveQL commands in a file and execute that from the command
line (Example 12-2).

196 | Chapter 12: Analyzing Data with Hadoop

http://hive.apache.org/
http://shop.oreilly.com/product/0636920023555.do
http://hive.apache.org

Example 12-2. Executing Hive from the command line

$ hive -f password-analysis.hql
$ hadoop dfs -cat /user/hive/warehouse/grpshell/000000_0

/bin/bash 5
/bin/false 16
/bin/sh 18
/bin/sync 1
/usr/sbin/nologin 1

The Hive command line passes commands directly to the Hive engine. Hive also sup-
ports variable substitution using the notation ${hiveconf:varName} inside the script and
the command line argument -hiveconfg varName=varValue. To interact with Hive out-
side the command line, you need to connect to a Hive server using a Thrift client or
over JDBC. The next section shows how you can start a Hive server on the command
line or bootstrap an embedded server in your Java application.

Running a Hive Server
In a production environment, it is most common to run a Hive server as a standalone
server process—potentially multiple Hive servers behind a HAProxy—to avoid some
known issues with handling many concurrent client connections.1

If you want to run a standalone server for use in the sample application, start Hive using
the command line:

hive --service hiveserver -hiveconf fs.default.name=hdfs://localhost:9000 \
 -hiveconf mapred.job.tracker=localhost:9001

Another alternative, useful for development or to avoid having to run another server,
is to bootstrap the Hive server in the same Java process that will run Hive client appli-
cations. The Hadoop namespace makes embedding the Hive server a one-line config-
uration task, as shown in Example 12-3.

Example 12-3. Creating a Hive server with default options

<hive-server/>

By default, the hostname is localhost and the port is 10000. You can change those
values using the host and port attributes. You can also provide additional options to
the Hive server by referencing a properties file with the properties-location attribute
or by inlining properties inside the <hive-server/> XML element. When the Applica
tionContext is created, the Hive server is started automatically. If you wish to override
this behavior, set the auto-startup element to false. Lastly, you can reference a specific
Hadoop configuration object, allowing you to create multiple Hive servers that connect
to different Hadoop clusters. These options are shown in Example 12-4.

1. https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Thrift+API

Using Hive | 197

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Thrift+API

Example 12-4. Creating and configuring a Hive server

<context:property-placeholder location="hadoop.properties,hive.properties" />

<configuration id="hadoopConfiguration">
 fs.default.name=${hd.fs}
 mapred.job.tracker=${mapred.job.tracker}
</configuration>

<hive-server port="${hive.port}" auto-startup="false"
 configuration-ref="hadoopConfiguration"
 properties-location="hive-server.properties">
 hive.exec.scratchdir=/tmp/hive/
</hive-server>

The files hadoop.properties and hive.properties are loaded from the classpath. Their
combined values are shown in Example 12-5. We can use the property file hive-server-
config.properties to configure the server; these values are the same as those you would
put inside hive-site.xml.

Example 12-5. Properties used to configure a simple Hive application

hd.fs=hdfs://localhost:9000
mapred.job.tracker=localhost:9001
hive.host=localhost
hive.port=10000
hive.table=passwords

Using the Hive Thrift Client
The Hadoop namespace supports creating a Thrift client, as shown in Example 12-6.

Example 12-6. Creating and configuring a Hive Thrift client

<hive-client-factory host="${hive.host}" port="${hive.port}"/>

The namespace creates an instance of the class HiveClientFactory. Calling the method
getHiveClient on HiveClientFactory will return a new instance of the HiveClient. This
is a convenient pattern that Spring provides since the HiveClient is not a thread-safe
class, so a new instance needs to be created inside methods that are shared across
multiple threads. Some of the other parameters that we can set on the HiveClient
through the XML namespace are the connection timeout and a collection of scripts to
execute once the client connects. To use the HiveClient, we create a HivePasswordRepo
sitory class to execute the password-analysis.hql script used in the previous section and
then execute a query against the passwords table. Adding a <context:component-scan/
> element to the configuration for the Hive server shown earlier will automatically
register the HivePasswordRepository class with the container by scanning the classpath
for classes annotated with the Spring stereotype @Repository annotation. See Exam-
ple 12-7.

198 | Chapter 12: Analyzing Data with Hadoop

Example 12-7. Using the Thrift HiveClient in a data access layer

@Repository
public class HivePasswordRepository implements PasswordRepository {

 private static final Log logger = LogFactory.getLog(HivePasswordRepository.class);

 private HiveClientFactory hiveClientFactory;
 private String tableName;

 // constructor and setters omitted

 @Override
 public Long count() {
 HiveClient hiveClient = hiveClientFactory.getHiveClient();
 try {
 hiveClient.execute("select count(*) from " + tableName);
 return Long.parseLong(hiveClient.fetchOne());
 // checked exceptions
 } catch (HiveServerException ex) {
 throw translateExcpetion(ex);
 } catch (org.apache.thrift.TException tex) {
 throw translateExcpetion(tex);
 } finally {
 try {
 hiveClient.shutdown();
 } catch (org.apache.thrift.TException tex) {
 logger.debug("Unexpected exception on shutting down HiveClient", tex);
 }
 }
 }

 @Override
 public void processPasswordFile(String inputFile) {
 // Implementation not shown
 }

 private RuntimeException translateExcpetion(Exception ex) {
 return new RuntimeException(ex);
 }
}

The sample code for this application is located in ./hadoop/hive. Refer to the readme
file in the sample's directory for more information on running the sample application.
The driver for the sample application will call HivePasswordRepository's processPass
wordFile method and then its count method, returning the value 41 for our dataset.
The error handling is shown in this example to highlight the data access layer devel-
opment best practice of avoiding throwing checked exceptions to the calling code.

The helper class HiveTemplate, which provides a number of benefits that can simplify
the development of using Hive programmatically. It translates the HiveClient’s checked
exceptions and error codes into Spring’s portable DAO exception hierarchy. This
means that calling code does not have to be aware of Hive. The HiveClient is also not

Using Hive | 199

thread-safe, so as with other template classes in Spring, the HiveTemplate provides
thread-safe access to the underlying resources so you don’t have to deal with the inci-
dental complexity of the HiveClient’s API. You can instead focus on executing HSQL
and getting results. To create a HiveTemplate, use the XML namespace and optionally
pass in a reference to the name of the HiveClientFactory. Example 12-8 is a minimal
configuration for the use of a new implementation of PasswordRepository that uses the
HiveTemplate.

Example 12-8. Configuring a HiveTemplate

<context:property-placeholder location="hadoop.properties,hive.properties"/>

<configuration>
 fs.default.name=${hd.fs}
 mapred.job.tracker=${mapred.job.tracker}
</configuration>

<hive-client-factory host="${hive.host}" port="${hive.port}"/>

<hive-template/>

The XML namespace for <hive-template/> will also let you explicitly reference a Hive
ClientFactory by name using the hive-client-factory-ref element. Using HiveTem
plate, the HiveTemplatePasswordRepository class is now much more simply imple-
mented. See Example 12-9.

Example 12-9. PersonRepository implementation using HiveTemplate

@Repository
public class HiveTemplatePasswordRepository implements PasswordRepository {

 private HiveOperations hiveOperations;
 private String tableName;

 // constructor and setters omitted

 @Override
 public Long count() {
 return hiveOperations.queryForLong("select count(*) from " + tableName);
 }

 @Override
 public void processPasswordFile(String inputFile) {
 Map parameters = new HashMap();
 parameters.put("inputFile", inputFile);
 hiveOperations.query("classpath:password-analysis.hql", parameters);
 }
}

Note that the HiveTemplate class implements the HiveOperations interface. This is a
common implementation style of Spring template classes since it facilitates unit testing,
as interfaces can be easily mocked or stubbed. The helper method queryForLong makes

200 | Chapter 12: Analyzing Data with Hadoop

it a one liner to retrieve simple values from Hive queries. HiveTemplate's query methods
also let you pass a reference to a script location using Spring’s Resource abstraction,
which provides great flexibility for loading an InputStream from the classpath, a file, or
over HTTP. The query method's second argument is used to replace substitution vari-
ables in the script with values. HiveTemplate also provides an execute callback method
that will hand you a managed HiveClient instance. As with other template classes in
Spring, this will let you get at the lower-level API if any of the convenience methods do
not meet your needs but you will still benefit from the template's exception, translation,
and resource management features.

Spring for Apache Hadoop also provides a HiveRunner helper class that like the JobRun
ner, lets you execute HDFS script operations before and after running a HiveQL script.
You can configure the runner using the XML namespace element <hive-runner/>.

Using the Hive JDBC Client
The JDBC support for Hive lets you use your existing Spring knowledge of JdbcTem
plate to interact with Hive. Hive provides a HiveDriver class that can be passed into
Spring’s SimpleDriverDataSource, as shown in Example 12-10.

Example 12-10. Creating and configuring a Hive JDBC-based access

<bean id="hiveDriver" class="org.apache.hadoop.hive.jdbc.HiveDriver" />

<bean id="dataSource" class="org.springframework.jdbc.datasource.SimpleDriverDataSource">
 <constructor-arg name="driver" ref="hiveDriver" />
 <constructor-arg name="url" value="${hive.url}"/>
</bean>

<bean id="jdbcTemplate" class="org.springframework.jdbc.core.simple.JdbcTemplate">
 <constructor-arg ref="dataSource" />
</bean>

SimpleDriverDataSource provides a simple implementation of the standard JDBC Data
Source interface given a java.sql.Driver implementation. It returns a new connection
for each call to the DataSource’s getConnection method. That should be sufficient for
most Hive JDBC applications, since the overhead of creating the connection is low
compared to the length of time for executing the Hive operation. If a connection pool
is needed, it is easy to change the configuration to use Apache Commons DBCP or c3p0
connection pools.

JdbcTemplate brings a wide range of ResultSet to POJO mapping functionality as well
as translating error codes into Spring’s portable DAO (data access object) exception
hierarchy. As of Hive 0.10, the JDBC driver supports generating meaningful error codes.
This allows you to easily distinguish between catching Spring’s TransientDataAcces
sException and NonTransientDataAccessException. Transient exceptions indicate that
the operation can be retried and will probably succeed, whereas a nontransient excep-
tion indicates that retrying the operation will not succeed.

Using Hive | 201

An implementation of the PasswordRepository using JdbcTemplate is shown in Exam-
ple 12-11.

Example 12-11. PersonRepository implementation using JdbcTemplate

@Repository
public class JdbcPasswordRepository implements PasswordRepository {

 private JdbcOperations jdbcOperations;
 private String tableName;

 // constructor and setters omitted

 @Override
 public Long count() {
 return jdbcOperations.queryForLong("select count(*) from " + tableName);
 }

 @Override
 public void processPasswordFile(String inputFile) {
 // Implementation not shown.
 }
}

The implementation of the method processPasswordFile is somewhat lengthy due to
the need to replace substitution variables in the script. Refer to the sample code for
more details. Note that Spring provides the utility class SimpleJdbcTestUtils is part of
the testing package; it’s often used to execute DDL scripts for relational databases but
can come in handy when you need to execute HiveQL scripts without variable substi-
tution.

Apache Logfile Analysis Using Hive
Next, we will perform a simple analysis on Apache HTTPD logfiles using Hive. The
structure of the configuration to run this analysis is similar to the one used previously
to analyze the password file with the HiveTemplate. The HiveQL script shown in Ex-
ample 12-12 generates a file that contains the cumulative number of hits for each URL.
It also extracts the minimum and maximum hit numbers and a simple table that can
be used to show the distribution of hits in a simple chart.

Example 12-12. HiveQL for basic Apache HTTPD log analysis

ADD JAR ${hiveconf:hiveContribJar};

DROP TABLE IF EXISTS apachelog;
CREATE TABLE apachelog(remoteHost STRING, remoteLogname STRING, user STRING, time STRING,
 method STRING, uri STRING, proto STRING, status STRING,
 bytes STRING, referer STRING, userAgent STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
WITH SERDEPROPERTIES (

202 | Chapter 12: Analyzing Data with Hadoop

 "input.regex" = "^([^]*) +([^]*) +([^]*) +\\[([^]]*)\\] +\\\"([^]*) ([^]*)
 ([^]*)\\\" ([^]*) ([^]*) (?:\\\"-\\\")*\\\"(.*)\\\" (.*)$",
 "output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s %10$s %11$s")
STORED AS TEXTFILE;

LOAD DATA LOCAL INPATH "${hiveconf:localInPath}" INTO TABLE apachelog;

-- basic filtering
-- SELECT a.uri FROM apachelog a WHERE a.method='GET' AND a.status='200';

-- determine popular URLs (for caching purposes)

INSERT OVERWRITE LOCAL DIRECTORY 'hive_uri_hits' SELECT a.uri, "\t", COUNT(*)
 FROM apachelog a GROUP BY a.uri ORDER BY uri;

-- create histogram data for charting, view book sample code for details

This example uses the utility library hive-contrib.jar, which contains a serializer/deser-
ializer that can read and parse the file format of Apache logfiles. The hive-contrib.jar
can be downloaded from Maven central or built directly from the source. While we
have parameterized the location of the hive-contrib.jar another option is to put a copy
of the jar into the Hadoop library directory on all task tracker machines. The results
are placed in local directories. The sample code for this application is located in ./
hadoop/hive. Refer to the readme file in the sample's directory for more information on
running the application. A sample of the contents of the data in the hive_uri_hits di-
rectory is shown in Example 12-13.

Example 12-13. The cumulative number of hits for each URI

/archives.html 3
/archives/000005.html 2
/archives/000021.html 1
…
/archives/000055.html 1
/archives/000064.html 2

The contents of the hive_histogram directory show that there is 1 URL that has been
requested 22 times, 3 URLs were each hit 4 times, and 74 URLs have been hit only
once. This gives us an indication of which URLs would benefit from being cached. The
sample application shows two ways to execute the Hive script, using the HiveTem
plate and the HiveRunner. The configuration for the HiveRunner is shown in Exam-
ple 12-14.

Example 12-14. Using a HiveRunner to run the Apache Log file analysis

<context:property-placeholder location="hadoop.properties,hive.properties"/>

<configuration>
 fs.default.name=${hd.fs}
 mapred.job.tracker=${mapred.job.tracker}
</configuration>

Using Hive | 203

<hive-server port="${hive.port}"
 properties-location="hive-server.properties"/>

<hive-client-factory host="${hive.host}" port="${hive.port}"/>

<hive-runner id="hiveRunner" run-at-startup="false" >
 <script location="apache-log-simple.hql">
 <arguments>
 hiveContribJar=${hiveContribJar}
 localInPath="./data/apache.log"
 </arguments>
 </script>
</hive-runner>

While the size of this dataset was very small and we could have analyzed it using Unix
command-line utilities, using Hadoop lets us scale the analysis over very large sets of
data. Hadoop also lets us cheaply store the raw data so that we can redo the analysis
without the information loss that would normally result from keeping summaries of
historical data.

Using Pig
Pig provides an alternative to writing MapReduce applications to analyze data stored
in HDFS. Pig applications are written in the Pig Latin language, a high-level data pro-
cessing language that is more in the spirit of using sed or awk than the SQL-like language
that Hive provides. A Pig Latin script describes a sequence of steps, where each step
performs a transformation on items of data in a collection. A simple sequence of steps
would be to load, filter, and save data, but more complex operation—such as joining
two data items based on common values—are also available. Pig can be extended by
user-defined functions (UDFs) that encapsulate commonly used functionality such as
algorithms or support for reading and writing well-known data formats such as Apache
HTTPD logfiles. A PigServer is responsible for translating Pig Latin scripts into multiple
jobs based on the MapReduce API and executing them.

A common way to start developing a Pig Latin script is to use the interactive console
that ships with Pig, called Grunt. You can execute scripts in two different run modes.
The first is the LOCAL mode, which works with data stored on the local filesystem and
runs MapReduce jobs locally using an embedded version of Hadoop. The second mode,
MAPREDUCE, uses HDFS and runs MapReduce jobs on the Hadoop cluster. By using
the local filesystem, you can work on a small set of the data and develop your scripts
iteratively. When you are satisfied with your script’s functionality, you can easily switch
to running the same script on the cluster over the full dataset. As an alternative to using
the interactive console or running Pig from the command line, you can embed the Pig
in your application. The PigServer class encapsulates how you can programmatically
connect to Pig, execute scripts, and register functions.

204 | Chapter 12: Analyzing Data with Hadoop

Spring for Apache Hadoop makes it very easy to embed the PigServer in your applica-
tion and to run Pig Latin scripts programmatically. Since Pig Latin does not have control
flow statements such as conditional branches (if-else) or loops, Java can be useful to
fill in those gaps. Using Pig programmatically also allows you to execute Pig scripts in
response to event-driven activities using Spring Integration, or to take part in a larger
workflow using Spring Batch.

To get familiar with Pig, we will first write a basic application to analyze the Unix
password files using Pig’s command-line tools. Then we show how you can use Spring
for Apache Hadoop to develop Java applications that make use of Pig. For more details
on how to install, run, and develop with Pig and Pig Latin, refer to the project web-
site as well as the book Programming Pig (O’Reilly).

Hello World
As a Hello World exercise, we will perform a small analysis on the Unix password file.
The goal of the analysis is to create a report on the number of users of a particular shell
(e.g., bash or sh). Using familiar Unix utilities, you can easily see how many people are
using the bash shell (Example 12-15).

Example 12-15. Using Unix utilities to count users of the bash shell

$ $ more /etc/passwd | grep /bin/bash
root:x:0:0:root:/root:/bin/bash
couchdb:x:105:113:CouchDB Administrator,,,:/var/lib/couchdb:/bin/bash
mpollack:x:1000:1000:Mark Pollack,,,:/home/mpollack:/bin/bash
postgres:x:116:123:PostgreSQL administrator,,,:/var/lib/postgresql:/bin/bash
testuser:x:1001:1001:testuser,,,,:/home/testuser:/bin/bash

$ more /etc/passwd | grep /bin/bash | wc -l
5

To perform a similar analysis using Pig, we first load the /etc/password file into HDFS
(Example 12-16).

Example 12-16. Copying /etc/password into HDFS

$ hadoop dfs -copyFromLocal /etc/passwd /test/passwd
$ hadoop dfs -cat /test/passwd

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
…

To install Pig, download it from the main Pig website. After installing the distribution,
you should add the Pig distribution’s bin directory to your path and also set the envi-
ronment variable PIG_CLASSPATH to point to the Hadoop configuration directory (e.g.,
export PIG_CLASSPATH=$HADOOP_INSTALL/conf/).

Using Pig | 205

http://pig.apache.org/
http://pig.apache.org/
http://shop.oreilly.com/product/0636920018087.do
http://pig.apache.org

Now we start the Pig interactive console, Grunt, in LOCAL mode and execute some
Pig Latin commands (Example 12-17).

Example 12-17. Executing Pig Latin commands using Grunt

$ pig -x local
grunt> passwd = LOAD '/test/passwd' USING PigStorage(':') \
 AS (username:chararray, password:chararray, uid:int, gid:int, userinfo:chararray,
 home_dir:chararray, shell:chararray);
grunt> grouped_by_shell = GROUP passwd BY shell;
grunt> password_count = FOREACH grouped_by_shell GENERATE group, COUNT(passwd);
grunt> STORE password_count into '/tmp/passwordAnalysis';
grunt> quit

Since the example dataset is small, all the results fit in a single tab-delimited file, as
shown in Example 12-18.

Example 12-18. Command execution result

$ hadoop dfs -cat /tmp/passwordAnalysis/part-r-00000

/bin/sh 18
/bin/bash 5
/bin/sync 1
/bin/false 16
/usr/sbin/nologin 1

The general flow of the data transformations taking place in the Pig Latin script is as
follows. The first line loads the data from the HDFS file, /test/passwd, into the variable
named passwd. The LOAD command takes the location of the file in HDFS, as well as the
format by which the lines in the file should be broken up, in order to create a dataset
(aka, a Pig relation). In this example, we are using the PigStorage function to load the
text file and separate the fields based on a colon character. Pig can apply a schema to
the columns that are in the file by defining a name and a data type to each column.
With the input dataset assigned to the variable passwd, we can now perform operations
on the dataset to transform it into other derived datasets. We create the dataset
grouped_by_shell using the GROUP operation. The grouped_by_shell dataset will have
the shell name as the key and a collection of all records in the passwd dataset that have
that shell value. If we had used the DUMP operation to view the contents of the grou
ped_by_shell dataset for the /bin/bash key, we would see the result shown in Exam-
ple 12-19.

Example 12-19. Group-by-shell dataset

(/bin/bash,{(testuser,x,1001,1001,testuser,,,,,/home/testuser,/bin/bash),
 (root,x,0,0,root,/root,/bin/bash),
 (couchdb,x,105,113,CouchDB Administrator,,,,/var/lib/couchdb,/bin/bash),
 (mpollack,x,1000,1000,Mark Pollack,,,,/home/mpollack,/bin/bash),
 (postgres,x,116,123,PostgreSQL administrator,,,,/var/lib/postgresql,/bin/bash)
 })

206 | Chapter 12: Analyzing Data with Hadoop

The key is the shell name and the value is a collection, or bag, of password records that
have the same key. In the next line, the expression FOREACH grouped_by_shell GENER
ATE will apply an operation on each record of the grouped_by_shell dataset and generate
a new record. The new dataset that is created will group together all the records with
the same key and count them.

We can also parameterize the script to avoid hardcoding values—for example, the input
and output locations. In Example 12-20, we put all the commands entered into the
interactive console into a file named password-analysis.pig, parameterized by the vari-
ables inputFile and outputDir.

Example 12-20. Parameterized Pig script

passwd = LOAD '$inputFile' USING PigStorage(':')
 AS (username:chararray, password:chararray, uid:int, gid:int, userinfo:chararray,
 home_dir:chararray, shell:chararray);
grouped_by_shell = GROUP passwd BY shell;
password_count = FOREACH grouped_by_shell GENERATE group, COUNT(passwd);
STORE password_count into '$outputDir';

To run this script in the interactive console, use the run command, as shown in Exam-
ple 12-21.

Example 12-21. Running a parameterized Pig script in Grunt

grunt> run -param inputFile=/test/passwd outputDir=/tmp/passwordAnalysis
 password-analysis.pig
grunt> exit

$ hadoop dfs -cat /tmp/passwordAnalysis/part-r-00000

/bin/sh 18
/bin/bash 5
/bin/sync 1
/bin/false 16
/usr/sbin/nologin 1

Or, to run the script directly in the command line, see Example 12-22.

Example 12-22. Running a parameterized Pig script on the command line

$ pig -file password-analysis.pig -param inputFile=/test/passwd
 -param outputDir=/tmp/passwordAnalysis

Running a PigServer
Now we’ll shift to using a more structured and programmatic way of running Pig
scripts. Spring for Apache Hadoop makes it easy to declaratively configure and create
a PigServer in a Java application, much like the Grunt shell does under the covers.
Running a PigServer inside the Spring container will let you parameterize and exter-
nalize properties that control what Hadoop cluster to execute your scripts against,

Using Pig | 207

properties of the PigServer, and arguments passed into the script. Spring’s XML name-
space for Hadoop makes it very easy to create and configure a PigServer. As Exam-
ple 12-23 demonstrates, this configuration is done in the same way as the rest of your
application configuration. The location of the optional Pig initialization script can be
any Spring resource URL, located on the filesystem, classpath, HDFS, or HTTP.

Example 12-23. Configuring a PigServer

<context:property-placeholder location="hadoop.properties" />

<configuration>
 fs.default.name=${hd.fs}
 mapred.job.tracker=${mapred.job.tracker}
</configuration>

<pig-factory properties-location="pig-server.properties"
 <script location="initialization.pig">
 <arguments>
 inputFile=${initInputFile}
 </arguments>
 </script>
<pig-factory/>

In Example 12-24, the script is located from the classpath and the variables to be re-
placed are contained in the property file hadoop.properties.

Example 12-24. hadoop.properties

hd.fs=hdfs://localhost:9000
mapred.job.tracker=localhost:9001
inputFile=/test/passwd
outputDir=/tmp/passwordAnalysis

Some of the other attributes on the <pig-factory/> namespace are properties-loca
tion, which references a properties file to configure properties of the PigServer; job-
tracker, which sets the location of the job tracker used to a value different than that
used in the Hadoop configuration; and job-name, which sets the root name of the Map-
Reduce jobs created by Pig so they can be easily identified as belonging to this script.

Since the PigServer class is not a thread-safe object and there is state created after each
execution that needs to be cleaned up, the <pig-factory/> namespace creates an in-
stance of a PigServerFactory so that you can easily create new PigServer instances as
needed. Similar in purpose to JobRunner and HiveRunner, the PigRunner helper class to
provide a convenient way to repeatedly execute Pig jobs and also execute HDFS scripts
before and after their execution. The configuration of the PigRunner is shown in Ex-
ample 12-25.

Example 12-25. Configuring a PigRunner

<pig-runner id="pigRunner"
 pre-action="hdfsScript"
 run-at-startup="true" >

208 | Chapter 12: Analyzing Data with Hadoop

 <script location="password-analysis.pig">
 <arguments>
 inputDir=${inputDir}
 outputDir=${outputDir}
 </arguments>
 </script>
</pig-runner>

We set the run-at-startup element to true, enabling the Pig script to be executed when
the Spring ApplicationContext is started (the default is false). The sample application
is located in the directory hadoop/pig. To run the sample password analysis application,
run the commands shown in Example 12-26.

Example 12-26. Command to build and run the Pig scripting example

$ cd hadoop/pig
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/pigApp

Since the PigServerFactory and PigRunner classes are Spring-managed objects, they can
also be injected into any other object managed by Spring. It is often convenient to inject
the PigRunner helper class to ensure that a new instance of the PigServer is created for
each execution of the script and that its resources used are cleaned up after execution.
For example, to run a Pig job asynchronously as part of a service layer in an application,
we inject the PigRunner and use Spring’s @Async annotation (Example 12-27).

Example 12-27. Dependency injection of a PigRunner to execute a Pig job asynchronously

@Component
public class AnalysisService {

 private PigRunner pigRunner;

 @Autowired
 public AnalysisService(PigRunner pigRunner)
 this.pigRunner = pigRunner;
 }

 @Async
 public void performAnalysis() {
 pigRunner.call();
 }
}

Controlling Runtime Script Execution
To have more runtime control over what Pig scripts are executed and the arguments
passed into them, we can use the PigTemplate class. As with other template classes in
Spring, PigTemplate manages the underlying resources on your behalf, is thread-safe
once configured, and will translate Pig errors and exceptions into Spring’s portable
DAO exception hierarchy. Spring’s DAO exception hierarchy makes it easier to work

Using Pig | 209

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/dao.html

across different data access technologies without having to catch exceptions or look
for return codes, which are specific to each technology. Spring’s DAO exception hier-
archy also helps to separate out nontransient and transient exceptions. In the case of a
transient exception being thrown, the failed operation might be able to succeed if it is
retried again. Using retry advice on a data access layer via Spring’s AOP (aspect-oriented
programming) support is one way to implement this functionality. Since Spring’s JDBC
helper classes also perform the same exception translation, exceptions thrown in any
Hive-based data access that uses Spring’s JDBC support will also map into the DAO
hierarchy. While switching between Hive and Pig is not a trivial task, since analysis
scripts need to be rewritten, you can at least insulate calling code from the differences
in implementation between a Hive-based and a Pig-based data access layer. It will also
allow you to more easily mix calls to Hive- and Pig-based data access classes and handle
errors in a consistent way.

To configure a PigTemplate, create a PigServerFactory definition as before and add a
<pig-template/> element (Example 12-28). We can define common configuration
properties of the PigServer in a properties file specified by the properties-location
element. Then reference the template inside a DAO or repository class—in this case,
PigPasswordRepository.

Example 12-28. Configuring a PigTemplate

<pig-factory properties-location="pig-server.properties"/>

<pig-template/>

<beans:bean id="passwordRepository"
 class="com.oreilly.springdata.hadoop.pig.PigPasswordRepository">
 <beans:constructor-arg ref="pigTemplate"/>
</beans:bean>

The PigPasswordRepository (Example 12-29) lets you pass in the input file at runtime.
The method processPasswordFiles shows you one way to programmatically process
multiple files in Java. For example, you may want to select a group of input files based
on a complex set of criteria that cannot be specified inside Pig Latin or a Pig user-defined
function. Note that the PigTemplate class implements the PigOperations interface. This
is a common implementation style of Spring template classes since it facilitates unit
testing, as interfaces can be easily mocked or stubbed.

Example 12-29. Pig-based PasswordRepository

public class PigPasswordRepository implements PasswordRepository {

 private PigOperations pigOperations;
 private String pigScript = "classpath:password-analysis.pig";

 // constructor and setters omitted

 @Override
 public void processPasswordFile(String inputFile) {

210 | Chapter 12: Analyzing Data with Hadoop

 Assert.notNull(inputFile);
 String outputDir =
 PathUtils.format("/data/password-repo/output/%1$tY/%1$tm/%1$td/%1$tH/%1$tM/%1$tS");
 Properties scriptParameters = new Properties();
 scriptParameters.put("inputDir", inputFile);
 scriptParameters.put("outputDir", outputDir);
 pigOperations.executeScript(pigScript, scriptParameters);
 }

 @Override
 public void processPasswordFiles(Collection<String> inputFiles) {
 for (String inputFile : inputFiles) {
 processPasswordFile(inputFile);
 }
 }
}

The pig script password-analysis.pig is loaded via Spring’s resource abstraction, which
in this case is loaded from the classpath. To run an application that uses the PigPass
wordRepository, use the commands in Example 12-30.

Example 12-30. Building and running the Pig scripting example that uses PigPasswordRepository

$ cd hadoop/pig
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/pigAppWithRepository

The essential pieces of code that are executed by this application are shown in Exam-
ple 12-31.

Example 12-31. Using the PigPasswordRepository

PasswordRepository repo = context.getBean(PigPasswordRepository.class);
repo.processPasswordFile("/data/passwd/input")

Collection<String> files = new ArrayList<String>();
files.add("/data/passwd/input");
files.add("/data/passwd/input2");
repo.processPasswordFiles(files);

Calling Pig Scripts Inside Spring Integration Data Pipelines
To run a Pig Latin script inside of a Spring Integration data pipeline, we can reference
the PigPasswordRepository in a Spring Integration service activator definition (Exam-
ple 12-32).

Example 12-32. Invoking a Pig script within a Spring Integration data pipeline

<bean id="passwordService" class="com.oreilly.springdata.hadoop.pig.PasswordService">
 <constructor-arg ref="passwordRepository" />
</bean>

<int:service-activator input-channel="exampleChannel" ref="passwordService" />

Using Pig | 211

Whether the service activator is executed asynchronously or synchronously depends
on the type of input channel used. If it is a DirectChannel (the default), then it will be
executed synchronously; if it is an ExecutorChannel, it will be executed asynchronously,
delegating the execution to a TaskExecutor. The service activator class, PasswordSer
vice, is shown in Example 12-33.

Example 12-33. Spring Integration service activator to execute a Pig analysis job

public class PasswordService {

 private PasswordRepository passwordRepository;

 // constructor omitted

 @ServiceActivator
 public void process(@Header("hdfs_path") String inputDir) {
 passwordRepository.processPasswordFile(inputDir);
 }
}

The process method’s argument will be taken from the header of the Spring Integration
message. The value of the method argument is the value associated with the key
hdfs_path in the message header. This header value is populated by a MessageHandler
implementation, such as the FsShellWritingMessageHandler used previously, and needs
to be called before the service activator in the data processing pipeline.

The examples in this section show that there is a steady progression from creating a
simple Pig-based application that runs a script, to executing scripts with runtime pa-
rameter substitution, to executing scripts within a Spring Integration data pipeline. The
section “Hadoop Workflows” on page 238 will show you how to orchestrate the ex-
ecution of a Pig script inside a larger collection of steps using Spring Batch.

Apache Logfile Analysis Using Pig
Next, we will perform a simple analysis on an Apache HTTPD logfile and show the use
of a custom loader for Apache logfiles. As you can see in Example 12-34, the structure
of the configuration to run this analysis is similar to the one used previously to analyze
the password file.

Example 12-34. Configuration to analyze an Apache HTTD logfile using Pig

<context:property-placeholder location="hadoop.properties,pig-analysis.properties"/>

<configuration>
 fs.default.name=${hd.fs}
 mapred.job.tracker=${mapred.job.tracker}
</configuration>

<pig-factory/>

<script id="hdfsScript" location="copy-files.groovy">

212 | Chapter 12: Analyzing Data with Hadoop

 <property name="localSourceFile" value="${pig.localSourceFile}"/>
 <property name="inputDir" value="${pig.inputPath}"/>
 <property name="outputDir" value="${pig.outputPath}"/>
</script>

The copy-files.groovy script is responsible for copying a sample logfile into HDFS, re-
moving the content of the output path.

The Pig script generates a file that contains the cumulative number of hits for each URL
and is intended to be a starting point for a more comprehensive analysis. The script
also extracts minimum and maximum hit numbers and a simple table that can be used
to show the distribution of hits in a simple chart. Pig makes it easy to filter and pre-
process the data on a variety of criteria—for example, retain only GET requests that
were successful and remove GET requests for images. The Pig script and the PigRun
ner configuration that will run the script when the Spring ApplicationContext starts are
shown in Example 12-35 and Example 12-36, respectively.

Example 12-35. Pig script for basic Apache HTTPD log analysis

REGISTER $piggybanklib;
DEFINE LogLoader org.apache.pig.piggybank.storage.apachelog.CombinedLogLoader();
logs = LOAD '$inputPath' USING LogLoader AS (remoteHost, remoteLogname, user, time, \
 method, uri, proto, status, bytes, referer, userAgent);

-- determine popular URLs (for caching purposes for example)
byUri = ORDER logs BY uri;
byUri = GROUP logs BY uri;

uriHits = FOREACH byUri GENERATE group AS uri, COUNT(logs.uri) AS numHits;
STORE uriHits into '$outputPath/pig_uri_hits';

-- create histogram data for charting, view book sample code for details

Example 12-36. PigRunner configuration to analyze Apache HTTPD files

<pig-runner id="pigRunner"
 pre-action="hdfsScript"
 run-at-startup="true" >
 <script location="apache-log-simple.pig">
 <arguments>
 piggybanklib=${pig.piggybanklib}
 inputPath=${pig.inputPath}
 outputPath=${pig.outputPath}
 </arguments>
 </script>
</pig-runner>

The arguments to the Pig script specify the location of a jar file that contains the custom
loader to read and parse Apache logfiles and the location of the input and output paths.
To parse the Apache HTTPD logfiles, we will use a custom loader provided as part of
the Pig distribution. It is distributed as source code as part of the Piggybank project.
The compiled Piggybank jar file is provided in the sample application’s lib directory.

Using Pig | 213

Using HBase
HBase is a distributed column-oriented database. It models data as tables, which are
then stored in HDFS and can scale to support tables with billions of rows and millions
of columns. Like Hadoop’s HDFS and MapReduce, HBase is modeled on technology
developed at Google. In the case of HBase, it is Google’s BigTable technology, which
was described in a research paper in 2006. Unlike MapReduce, HBase provides near
real-time key-based access to data, and therefore can be used in interactive, non-batch-
based applications.

The HBase data model consists of a table identified by a unique key with associated
columns. These columns are grouped together into column families so that data that
is often accessed together can be stored together on disk to increase I/O performance.
The data stored in a column is a collection of key/value pairs, not a single value as is
commonly the case in a relational database. A schema is used to describe the column
families and needs to be defined in advance, but the collection of key/value pairs stored
as values does not. This gives the system a great amount of flexibility to evolve. There
are many more details to the data model, which you must thoroughly understand in
order to use HBase effectively. The book HBase: The Definitive Guide (O’Reilly) is an
excellent reference to HBase and goes into great detail about the data model, architec-
ture, API, and administration of HBase.

Spring for Apache Hadoop provides some basic, but quite handy, support for devel-
oping HBase applications, allowing you to easily configure your connection to HBase
and provide thread-safe data access to HBase tables, as well as a lightweight object-to-
column data mapping functionality.

Hello World
To install HBase, download it from the main Hive website. After installing the distri-
bution, you start the HBase server by executing the start-hbase.sh script in the bin
directory. As with Pig and Hive, HBase comes with an interactive console, which you
can start by executing the command hbase shell in the bin directory.

Once inside the interactive console, you can start to create tables, define column fam-
ilies, and add rows of data to a specific column family. Example 12-37 demonstrates
creating a user table with two column families, inserting some sample data, retrieving
data by key, and deleting a row.

Example 12-37. Using the HBase interactive console

$./bin/hbase shell
> create 'users', { NAME => 'cfInfo'}, { NAME => 'cfStatus' }
> put 'users', 'row-1', 'cfInfo:qUser', 'user1'
> put 'users', 'row-1', 'cfInfo:qEmail', 'user1@yahoo.com'
> put 'users', 'row-1', 'cfInfo:qPassword', 'user1pwd'
> put 'users', 'row-1', 'cfStatus:qEmailValidated', 'true'

214 | Chapter 12: Analyzing Data with Hadoop

http://research.google.com/archive/bigtable.html
http://shop.oreilly.com/product/0636920014348.do
http://hbase.apache.org

> scan 'users'
ROW COLUMN+CELL
 row-1 column=cfInfo:qEmail, timestamp=1346326115599, value=user1
 @yahoo.com
 row-1 column=cfInfo:qPassword, timestamp=1346326128125, value=us
 er1pwd
 row-1 column=cfInfo:qUser, timestamp=1346326078830, value=user1
 row-1 column=cfStatus:qEmailValidated, timestamp=1346326146784,
 value=true
1 row(s) in 0.0520 seconds
> get 'users', 'row-1'
COLUMN CELL
 cfInfo:qEmail timestamp=1346326115599, value=user1@yahoo.com
 cfInfo:qPassword timestamp=1346326128125, value=user1pwd
 cfInfo:qUser timestamp=1346326078830, value=user1
 cfStatus:qEmailValid timestamp=1346326146784, value=true
 ated
4 row(s) in 0.0120 seconds

> deleteall 'users', 'row-1'

The two column families created are named cfInfo and cfStatus. The key names, called
qualifiers in HBase, that are stored in the cfInfo column family are the username, email,
and password. The cfStatus column family stores other information that we do not
frequently need to access, along with the data stored in the cfInfo column family. As
an example, we place the status of the email address validation process in the cfSta
tus column family, but other data—such as whether the user has participated in any
online surveys—is also a candidate for inclusion. The deleteall command deletes all
data for the specified table and row.

Using the HBase Java Client
There are many client API options to interact with HBase. The Java client is what we
will use in this section but REST, Thrift, and Avro clients are also available. The
HTable class is the main way in Java to interact with HBase. It allows you to put data
into a table using a Put class, get data by key using a Get class, and delete data using a
Delete class. You query that data using a Scan class, which lets you specify key ranges
as well as filter criteria. Example 12-38 puts a row of user data under the key user1 into
the user table from the previous section.

Example 12-38. HBase Put API

Configuration configuration = new Configuration(); // Hadoop configuration object
HTable table = new HTable(configuration, "users");

Put p = new Put(Bytes.toBytes("user1"));
p.add(Bytes.toBytes("cfInfo"), Bytes.toBytes("qUser"), Bytes.toBytes("user1"));
p.add(Bytes.toBytes("cfInfo"), Bytes.toBytes("qEmail"), Bytes.toBytes("user1@yahoo.com"));
p.add(Bytes.toBytes("cfInfo"), Bytes.toBytes("qPassword"), Bytes.toBytes("user1pwd"));
table.put(p);

Using HBase | 215

The HBase API requires that you work with the data as byte arrays and not other
primitive types. The HTable class is also not thread safe, and requires you to carefully
manage the underlying resources it uses and catch HBase-specific exceptions. Spring’s
HBaseTemplate class provides a higher-level abstraction for interacting with HBase. As
with other Spring template classes, it is thread-safe once created and provides exception
translation into Spring’s portable data access exception hierarchy. Similar to JdbcTem
plate, it provides several callback interfaces, such as TableCallback, RowMapper, and
ResultsExtractor, that let you encapsulate commonly used functionality, such as map-
ping HBase result objects to POJOs.

The TableCallback callback interface provides the foundation for the functionality of
HBaseTemplate. It performs the table lookup, applies configuration settings (such as
when to flush data), closes the table, and translates any thrown exceptions into Spring’s
DAO exception hierarchy. The RowMapper callback interface is used to map one row
from the HBase query ResultScanner into a POJO. HBaseTemplate has several overloa-
ded find methods that take additional criteria and that automatically loop over HBase’s
ResultScanner “result set” object, converting each row to a POJO, and return a list of
mapped objects. See the Javadoc API for more details. For more control over the map-
ping process—for example, when one row does not directly map onto one POJO—the
ResultsExtractor interface hands you the ResultScanner object so you can perform the
iterative result set processing yourself.

To create and configure the HBaseTemplate, create a HBaseConfiguration object and pass
it to HBaseTemplate. Configuring a HBaseTemplate using Spring’s Hadoop XML name-
space is demonstrated in Example 12-39, but it is also easy to achieve programmatically
in pure Java code.

Example 12-39. Configuring an HBaseTemplate

<configuration>
 fs.default.name=hdfs://localhost:9000
</configuration>

<hbase-configuration configuration-ref="hadoopConfiguration" />

<beans:bean id="hbaseTemplate" class="org.springframework.data.hadoop.hbase.HbaseTemplate">
 <beans:property name="configuration" ref="hbaseConfiguration" />
</beans:bean>

A HBaseTemplate-based UserRepository class that finds all users and also adds users to
HBase is shown in Example 12-40.

Example 12-40. HBaseTemplate-based UserRepository class

@Repository
public class UserRepository {

 public static final byte[] CF_INFO = Bytes.toBytes("cfInfo");

 private HbaseTemplate hbaseTemplate;

216 | Chapter 12: Analyzing Data with Hadoop

http://static.springsource.org/spring-hadoop/docs/current/api/

 private String tableName = "users";
 private byte[] qUser = Bytes.toBytes("user");
 private byte[] qEmail = Bytes.toBytes("email");
 private byte[] qPassword = Bytes.toBytes("password");

 // constructor omitted

 public List<User> findAll() {
 return hbaseTemplate.find(tableName, "cfInfo", new RowMapper<User>() {
 @Override
 public User mapRow(Result result, int rowNum) throws Exception {
 return new User(Bytes.toString(result.getValue(CF_INFO, qUser)),
 Bytes.toString(result.getValue(CF_INFO, qEmail)),
 Bytes.toString(result.getValue(CF_INFO, qPassword)));
 }
 });
 }

 public User save(final String userName, final String email, final String password) {
 return hbaseTemplate.execute(tableName, new TableCallback<User>() {
 public User doInTable(HTable table) throws Throwable {
 User user = new User(userName, email, password);
 Put p = new Put(Bytes.toBytes(user.getName()));
 p.add(CF_INFO, qUser, Bytes.toBytes(user.getName()));
 p.add(CF_INFO, qEmail, Bytes.toBytes(user.getEmail()));
 p.add(CF_INFO, qPassword, Bytes.toBytes(user.getPassword()));
 table.put(p);
 return user;
 }
 });
 }
}

In this example, we used an anonymous inner class to implement the TableCallback
and RowMapper interfaces, but creating standalone classes is a common implementation
strategy that lets you reuse mapping logic across various parts of your application.
While you can develop far more functionality with HBase to make it as feature-rich as
Spring’s MongoDB support, we’ve seen that the basic plumbing for interacting with
HBase available with Spring Hadoop at the time of this writing simplifies HBase ap-
plication development. In addition, HBase allows for a consistent configuration and
programming model that you can further use and extend across Spring Data and other
Spring-related projects.

Using HBase | 217

CHAPTER 13

Creating Big Data Pipelines with Spring
Batch and Spring Integration

The goal of Spring for Apache Hadoop is to simplify the development of Hadoop ap-
plications. Hadoop applications involve much more than just executing a single Map-
Reduce job and moving a few files into and out of HDFS as in the wordcount example.
There is a wide range of functionality needed to create a real-world Hadoop application.
This includes collecting event-driven data, writing data analysis jobs using program-
ming languages such as Pig, scheduling, chaining together multiple analysis jobs, and
moving large amounts of data between HDFS and other systems such as databases and
traditional filesystems.

Spring Integration provides the foundation to coordinate event-driven activities—for
example, the shipping of logfiles, processing of event streams, real-time analysis, or
triggering the execution of batch data analysis jobs. Spring Batch provides the frame-
work to coordinate coarse-grained steps in a workflow, both Hadoop-based steps and
those outside of Hadoop. Spring Batch also provides efficient data processing capabil-
ities to move data into and out of HDFS from diverse sources such as flat files, relational
databases, or NoSQL databases.

Spring for Apache Hadoop in conjunction with Spring Integration and Spring Batch
provides a comprehensive and consistent programming model that can be used to im-
plement Hadoop applications that span this wide range of functionality. Another prod-
uct, Splunk, also requires a wide range of functionality to create real-world big data
pipeline solutions. Spring’s support for Splunk helps you to create complex Splunk
applications and opens the door for solutions that mix these two technologies.

Collecting and Loading Data into HDFS
The examples demonstrated until now have relied on a fixed set of data files existing
in a local directory that get copied into HDFS. In practice, files that are to be loaded
into HDFS are continuously generated by another process, such as a web server. The

219

contents of a local directory get filled up with rolled-over logfiles, usually following a
naming convention such as myapp-timestamp.log. It is also common that logfiles are
being continuously created on remote machines, such as a web farm, and need to be
transferred to a separate machine and loaded into HDFS. We can implement these use
cases by using Spring Integration in combination with Spring for Apache Hadoop.

In this section, we will provide a brief introduction to Spring Integration and then
implement an application for each of the use cases just described. In addition, we will
show how Spring Integration can be used to process and load into HDFS data that
comes from an event stream. Lastly, we will show the features available in Spring In-
tegration that enable rich runtime management of these applications through JMX
(Java management extensions) and over HTTP.

An Introduction to Spring Integration
Spring Integration is an open source Apache 2.0 licensed project, started in 2007, that
supports writing applications based on established enterprise integration patterns.
These patterns provide the key building blocks to develop integration applications that
tie new and existing system together. The patterns are based upon a messaging model
in which messages are exchanged within an application as well as between external
systems. Adopting a messaging model brings many benefits, such as the logical decou-
pling between components as well as physical decoupling; the consumer of messages
does not need to be directly aware of the producer. This decoupling makes it easier to
build integration applications, as they can be developed by assembling individual
building blocks together. The messaging model also makes it easier to test the appli-
cation, since individual blocks can be tested first in isolation from other components.
This allows bugs to be found earlier in the development process rather than later during
distributed system testing, where tracking down the root cause of a failure can be very
difficult. The key building blocks of a Spring Integration application and how they
relate to each other is shown in Figure 13-1.

Figure 13-1. Building block of a Spring Integration application

Endpoints are producers or consumers of messages that are connected through chan-
nels. Messages are a simple data structure that contains key/value pairs in a header and
an arbitrary object type for the payload. Endpoints can be adapters that communicate
with external systems such as email, FTP, TCP, JMS, RabbitMQ, or syslog, but can
also be operations that act on a message as it moves from one channel to another.

220 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

http://www.eaipatterns.com/

Common messaging operations that are supported in Spring Integration are routing to
one or more channels based on the headers of message, transforming the payload from
a string to a rich data type, and filtering messages so that only those that pass the filter
criteria are passed along to a downstream channel. Figure 13-2 is an example taken
from a joint Spring/C24 project in the financial services industry that shows the type
of data processing pipelines that can be created with Spring Integration.

Figure 13-2. A Spring Integration processing pipeline

This diagram shows financial trade messages being received on the left via three Rab-
bitMQ adapters that correspond to three external sources of trade data. The messages
are then parsed, validated, and transformed into a canonical data format. Note that
this format is not required to be XML and is often a POJO. The message header is then
enriched, and the trade is stored into a relational database and also passed into a filter.
The filter selects only high-value trades that are subsequently placed into a GemFire-
based data grid where real-time processing can occur. We can define this processing
pipeline declaratively using XML or Scala, but while most of the application can be
declaratively configured, any components that you may need to write are POJOs that
can be easily unit-tested.

In addition to endpoints, channels, and messages, another key component of Spring
Integration is its management functionality. You can easily expose all components in
a data pipeline via JMX, where you can perform operations such as stopping and start-
ing adapters. The control bus component allows you to send in small fragments of
code—for example, using Groovy—that can take complex actions to modify the state

Collecting and Loading Data into HDFS | 221

http://www.c24.biz/

of the system, such as changing filter criteria or starting and stopping adapters. The
control bus is then connected to a middleware adapter so it can receive code to execute;
HTTP and message-oriented middleware adapters are common choices.

We will not be able to dive into the inner workings of Spring Integration in great depth,
nor cover every feature of the adapters that are used, but you should end up with a
good feel for how you can use Spring Integration in conjunction with Spring for Apache
Hadoop to create very rich data pipeline solutions. The example applications developed
here contain some custom code for working with HDFS that is planned to be incor-
porated into the Spring Integration project. For additional information on Spring In-
tegration, consult the project website, which contains links to extensive reference doc-
umentation, sample applications, and links to several books on Spring Integration.

Copying Logfiles
Copying logfiles into Hadoop as they are continuously generated is a common task.
We will create two applications that continuously load generated logfiles into HDFS.
One application will use an inbound file adapter to poll a directory for files, and the
other will poll an FTP site. The outbound adapter writes to HDFS, and its implemen-
tation uses the FsShell class provided by Spring for Apache Hadoop, which was de-
scribed in “Scripting HDFS on the JVM” on page 187. The diagram for this data pipeline
is shown in Figure 13-3.

Figure 13-3. A Spring Integration data pipeline that polls a directory for files and copies them into
HDFS

The file inbound adapter is configured with the directory to poll for files as well as the
filename pattern that determines what files will be detected by the adapter. These values
are externalized into a properties file so they can easily be changed across different
runtime environments. The adapter uses a poller to check the directory since the file-
system is not an event-driven source. There are several ways you can configure the
poller, but the most common are to use a fixed delay, a fixed rate, or a cron expression.
In this example, we do not make use of any additional operations in the pipeline that
would sit between the two adapters, but we could easily add that functionality if re-
quired. The configuration file to configure this data pipeline is shown in Example 13-1.

222 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

http://www.springsource.org/spring-integration/

Example 13-1. Defining a data pipeline that polls for files in a directory and loads them into HDFS

<context:property-placeholder location="hadoop.properties,polling.properties"/>

<hdp:configuration id="hadoopConfiguration">fs.default.name=${hd.fs}</hdp:configuration>

<int:channel id="filesIn"/>

<file:inbound-channel-adapter id="inFileAdapter"
 channel="filesIn"
 directory="${polling.directory}"
 filename-pattern="${polling.fileNamePattern}">
 <int:poller id="poller" fixed-delay="${polling.fixedDelay}"/>
</file:inbound-channel-adapter>

<int:outbound-channel-adapter id="outHdfsAdapter"
 channel="filesIn"
 ref="fsShellWritingMessagingHandler" >

<bean id="fsShellWritingMessagingHandler"
 class="com.oreilly.springdata.hadoop.filepolling.FsShellWritingMessageHandler">
 <constructor-arg value="${polling.destinationHdfsDirectory}"/>
 <constructor-arg ref="hadoopConfiguration"/>
</bean>

The relevant configuration parameters for the pipeline are externalized in the poll
ing.properties file, as shown in Example 13-2.

Example 13-2. The externalized properties for polling a directory and loading them into HDFS

polling.directory=/opt/application/logs
polling.fixedDelay=5000
polling.fileNamePattern=*.txt
polling.destinationHdfsDirectory=/data/application/logs

This configuration will poll the directory /opt/application/logs every five seconds and
look for files that match the pattern *.txt. By default, duplicate files are prevented when
we specify a filename-pattern; the state is kept in memory. A future enhancement of
the file adapter is to persistently store this application state. The FsShellWritingMessa
geHandler class is responsible for copying the file into HDFS using FsShell’s copyFrom
Local method. If you want to remove the files from the polling directory after the trans-
fer, then you set the property deleteSourceFiles on FsShellWritingMessageHandler to
true. You can also lock files to prevent them from being picked up concurrently if more
than one process is reading from the same directory. See the Spring Integration reference
guide for more information.

To build and run this application, use the commands shown in Example 13-3.

Collecting and Loading Data into HDFS | 223

Example 13-3. Command to build and run the file polling example

$ cd hadoop/file-polling
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/filepolling

The relevant parts of the output are shown in Example 13-4.

Example 13-4. Output from running the file polling example

03:48:44.187 [main] INFO
 c.o.s.hadoop.filepolling.FilePolling - File Polling Application Running
03:48:44.191 [task-scheduler-1] DEBUG o.s.i.file.FileReadingMessageSource - \
Added to queue: [/opt/application/logs/file_1.txt]
03:48:44.215 [task-scheduler-1] INFO o.s.i.file.FileReadingMessageSource - \
Created message: [[Payload=/opt/application/logs/file_1.txt]
03:48:44.215 [task-scheduler-1] DEBUG o.s.i.e.SourcePollingChannelAdapter - \
Poll resulted in Message: [Payload=/opt/application/logs/file_1.txt]
03:48:44.215 [task-scheduler-1] DEBUG o.s.i.channel.DirectChannel - \
preSend on channel 'filesIn', message: [Payload=/opt/application/logs/file_1.txt]
03:48:44.310 [task-scheduler-1] INFO c.o.s.h.f.FsShellWritingMessageHandler - \
sourceFile = /opt/application/logs/file_1.txt
03:48:44.310 [task-scheduler-1] INFO c.o.s.h.f.FsShellWritingMessageHandler - \
resultFile = /data/application/logs/file_1.txt
03:48:44.462 [task-scheduler-1] DEBUG o.s.i.channel.DirectChannel - \
postSend (sent=true) on channel 'filesIn', \
message: [Payload=/opt/application/logs/file_1.txt]
03:48:49.465 [task-scheduler-2] DEBUG o.s.i.e.SourcePollingChannelAdapter - \
Poll resulted in Message: null
03:48:49.465 [task-scheduler-2] DEBUG o.s.i.e.SourcePollingChannelAdapter - \
Received no Message during the poll, returning 'false'
03:48:54.466 [task-scheduler-1] DEBUG o.s.i.e.SourcePollingChannelAdapter - \
Poll resulted in Message: null
03:48:54.467 [task-scheduler-1] DEBUG o.s.i.e.SourcePollingChannelAdapter - \
Received no Message during the poll, returning 'false'

In this log, we can see that the first time around the poller detects the one file that was
in the directory and then afterward considers it processed, so the file inbound adapter
does not process it a second time. There are additional options in FsShellWritingMes
sageHandler to enable the generation of an additional directory path that contains an
embedded date or a UUID (universally unique identifier). To enable the output to have
an additional dated directory path using the default path format (year/month/day/hour/
minute/second), set the property generateDestinationDirectory to true. Setting gener
ateDestinationDirectory to true would result in the file written into HDFS, as shown
in Example 13-5.

Example 13-5. Partial output from running the file polling example with
generateDestinationDirectory set to true

03:48:44.187 [main] INFO c.o.s.hadoop.filepolling.FilePolling - \
File Polling Application Running
...
04:02:32.843 [task-scheduler-1] INFO c.o.s.h.f.FsShellWritingMessageHandler - \

224 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

 sourceFile = /opt/application/logs/file_1.txt
04:02:32.843 [task-scheduler-1] INFO c.o.s.h.f.FsShellWritingMessageHandler - \
 resultFile = /data/application/logs/2012/08/09/04/02/32/file_1.txt

Another way to move files into HDFS is to collect them via FTP from remote machines,
as illustrated in Figure 13-4.

Figure 13-4. A Spring Integration data pipeline that polls an FTP site for files and copies them into
HDFS

The configuration in Example 13-6 is similar to the one for file polling, only the con-
figuration of the inbound adapter is changed.

Example 13-6. Defining a data pipeline that polls for files on an FTP site and loads them into HDFS

<context:property-placeholder location="ftp.properties,hadoop.properties"/>

<hdp:configuration>fs.default.name=${hd.fs}</hdp:configuration>

<bean id="ftpClientFactory"
 class="org.springframework.integration.ftp.session.DefaultFtpSessionFactory">
 <property name="host" value="${ftp.host}"/>
 <property name="port" value="${ftp.port}"/>
 <property name="username" value="${ftp.username}"/>
 <property name="password" value="${ftp.password}"/>
</bean>

<int:channel id="filesIn"/>

<int-ftp:inbound-channel-adapter id="inFtpAdapter"
 channel="filesIn"
 cache-sessions="false"
 session-factory="ftpClientFactory"
 filename-pattern="*.txt"
 auto-create-local-directory="true"
 delete-remote-files="false"
 remote-directory="${ftp.remoteDirectory}"
 local-directory="${ftp.localDirectory}">
 <int:poller fixed-rate="5000"/>
</int-ftp:inbound-channel-adapter>

<int:outbound-channel-adapter id="outHdfsAdapter"
 channel="filesIn" ref="fsShellWritingMessagingHandler"/>

<bean id="fsShellWritingMessagingHandler"
 class="com.oreilly.springdata.hadoop.ftp.FsShellWritingMessageHandler">

Collecting and Loading Data into HDFS | 225

 <constructor-arg value="${ftp.destinationHdfsDirectory}"/>
 <constructor-arg ref="hadoopConfiguration"/>
</bean>

You can build and run this application using the commands shown in Example 13-7.

Example 13-7. Command to build and run the file polling example

$ cd hadoop/ftp
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/ftp

The configuration assumes there is a testuser account on the FTP host machine. Once
you place a file in the outgoing FTP directory, you will see the data pipeline in action,
copying the file to a local directory and then copying it into HDFS.

Event Streams
Streams are another common source of data that you might want to store into HDFS
and optionally perform real-time analysis as it flows into the system. To meet this need,
Spring Integration provides several inbound adapters that we can use to process streams
of data. Once inside a Spring Integration, the data can be passed through a processing
chain and stored into HDFS. The pipeline can also take parts of the stream and write
data to other databases, both relational and NoSQL, in addition to forwarding the
stream to other systems using one of the many outbound adapters. Figure 13-2 showed
one example of this type of data pipeline. Next, we will use the TCP (Transmission
Control Protocol) and UDP (User Datagram Protocol) inbound adapters to consume
data produced by syslog and then write the data into HDFS.

The configuration that sets up a TCP-syslog-to-HDFS processing chain is shown in
Example 13-8.

Example 13-8. Defining a data pipeline that receives syslog data over TCP and loads it into HDFS

<context:property-placeholder location="hadoop.properties, syslog.properties"/>

<hdp:configuration register-url-handler="false">
 fs.default.name=${hd.fs}
</hdp:configuration>

<hdp:file-system id="hadoopFs"/>

<int-ip:tcp-connection-factory id="syslogListener"
 type="server"
 port="${syslog.tcp.port}"
 deserializer="lfDeserializer"/>

<bean id="lfDeserializer"
 class="com.oreilly.springdata.integration.ip.syslog.ByteArrayLfSerializer"/>

226 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

http://en.wikipedia.org/wiki/Syslog

<int-ip:tcp-inbound-channel-adapter id="tcpAdapter"
 channel="syslogChannel"
 connection-factory="syslogListener"/>

<!-- processing chain -->
<int:chain input-channel="syslogChannel">
 <int:transformer ref="sysLogToMapTransformer"/>
 <int:object-to-string-transformer/>
 <int:outbound-channel-adapter ref="hdfsWritingMessageHandler"/>
</int:chain>

<bean id="sysLogToMapTransformer"
 class="com.oreilly.springdata.integration.ip.syslog.SyslogToMapTransformer"/>

<bean id="hdfsWritingMessageHandler"
 class="com.oreilly.springdata.hadoop.streaming.HdfsWritingMessageHandler">
 <constructor-arg ref="hdfsWriterFactory"/>
</bean>

<bean id="hdfsWriterFactory"
 class="com.oreilly.springdata.hadoop.streaming.HdfsTextFileWriterFactory">
 <constructor-arg ref="hadoopFs"/>
 <property name="basePath" value="${syslog.hdfs.basePath}"/>
 <property name="baseFilename" value="${syslog.hdfs.baseFilename}"/>
 <property name="fileSuffix" value="${syslog.hdfs.fileSuffix}"/>
 <property name="rolloverThresholdInBytes"
 value="${syslog.hdfs.rolloverThresholdInBytes}"/>
</bean>

The relevant configuration parameters for the pipeline are externalized in the stream
ing.properties file, as shown in Example 13-9.

Example 13-9. The externalized properties for streaming data from syslog into HDFS

syslog.tcp.port=1514
syslog.udp.port=1513
syslog.hdfs.basePath=/data/
syslog.hdfs.baseFilename=syslog
syslog.hdfs.fileSuffix=log
syslog.hdfs.rolloverThresholdInBytes=500

The diagram for this data pipeline is shown in Figure 13-5.

This configuration will create a connection factory that listens for an incoming TCP
connection on port 1514. The serializer segments the incoming byte stream based on
the newline character in order to break up the incoming syslog stream into events. Note
that this lower-level serializer configuration will be encapsulated in a syslog XML
namespace in the future so as to simplify the configuration. The inbound channel
adapter takes the syslog message off the TCP data stream and parses it into a byte array,
which is set as the payload of the incoming message.

Collecting and Loading Data into HDFS | 227

Figure 13-5. A Spring Integration data pipeline that streams data from syslog into HDFS

Spring Integration’s chain component groups together a sequence of endpoints without
our having to explicitly declare the channels that connect them. The first element in
the chain parses the byte[] array and converts it to a java.util.Map containing the key/
value pairs of the syslog message. At this stage, you could perform additional operations
on the data, such as filtering, enrichment, real-time analysis, or routing to other data-
bases. In this example, we have simply transformed the payload (now a Map) to a
String using the built-in object-to-string transformer. This string is then passed into
the HdfsWritingMessageHandler that writes the data into HDFS. HdfsWritingMessage
Handler lets you configure the HDFS directory to write the files, the file naming policy,
and the file size rollover policy. In this example, the rollover threshold was set artificially
low (500 bytes versus the 10 MB default) to highlight the rollover capabilities in a simple
test usage case.

To build and run this application, use the commands shown in Example 13-10.

Example 13-10. Commands to build and run the Syslog streaming example

$ cd hadoop/streaming
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/streaming

To send a test message, use the logger utility demonstrated in Example 13-11.

Example 13-11. Sending a message to syslog

$ logger -p local3.info -t TESTING "Test Syslog Message"

Since we set HdfsWritingMessageHandler’s rolloverThresholdInBytes property so low,
after sending a few of these messages or just waiting for messages to come in from the
operating system, you will see inside HDFS the files shown in Example 13-12.

Example 13-12. Syslog data in HDFS

$ hadoop dfs -ls /data
-rw-r--r-- 3 mpollack supergroup 711 2012-08-09 13:19 /data/syslog-0.log
-rw-r--r-- 3 mpollack supergroup 202 2012-08-09 13:22 /data/syslog-1.log
-rw-r--r-- 3 mpollack supergroup 240 2012-08-09 13:22 /data/syslog-2.log
-rw-r--r-- 3 mpollack supergroup 119 2012-08-09 15:04 /data/syslog-3.log
…

228 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

$ hadoop dfs -cat /data/syslog-2.log
{HOST=ubuntu, MESSAGE=Test Syslog Message, SEVERITY=6, FACILITY=19, \
 TIMESTAMP=Thu Aug 09 13:22:44 EDT 2012, TAG=TESTING}
{HOST=ubuntu, MESSAGE=Test Syslog Message, SEVERITY=6, FACILITY=19, \
 TIMESTAMP=Thu Aug 09 13:22:55 EDT 2012, TAG=TESTING}

To use UDP instead of TCP, remove the TCP-related definitions and add the commands
shown in Example 13-13.

Example 13-13. Configuration to use UDP to consume syslog data

<int-ip:udp-inbound-channel-adapter id="udpAdapter"
 channel="syslogChannel" port="${syslog.udp.port}"/>

Event Forwarding
When you need to process a large amount of data from several different machines, it
can be useful to forward the data from where it is produced to another server (as op-
posed to processing the data locally). The TCP inbound and outbound adapters can
be paired together in an application so that they forward data from one server to an-
other. The channel that connects the two adapters can be backed by several persistent
message stores. Message stores are represented in Spring Integration by the interface
MessageStore, and implementations are available for JDBC, Redis, MongoDB, and
GemFire. Pairing inbound and outbound adapters together in an application affects
the message processing flow such that the message is persisted in the message store of
the producer application before the message is sent to the consumer application. The
message is removed from the producer’s message store once the acknowledgment from
the consumer is received. The consumer sends its acknowledgment once it has suc-
cessfully put the received message in its own message-store-backed channel. This
configuration enables an additional level of "store and forward" guarantee via TCP
normally found in messaging middleware such as JMS or RabbitMQ.

Example 13-14 is a simple demonstration of forwarding TCP traffic and using Spring’s
support to easily bootstrap an embedded HSQL database to serve as the message store.

Example 13-14. Store and forwarding of data across processes using TCP adapters

<int:channel id="dataChannel">
 <int:queue message-store="messageStore"/>
</int:channel>

<int-jdbc:message-store id="messageStore" data-source="dataSource"/>

<jdbc:embedded-database id="dataSource"/>

<int-ip:tcp-inbound-channel-adapter id="tcpInAdapter"
 channel="dataChannel" port="${syslog.tcp.in.port}"/>

<int-ip:tcp-outbound-channel-adapter id="tcpOutAdapter"
 channel="dataChannel" port="${syslog.tcp.out.port}"/>

Collecting and Loading Data into HDFS | 229

Management
Spring Integration provides two key features that let you manage data pipelines at run-
time: the exporting of channels and endpoints to JMX and a control bus. Much like
JMX, the control bus lets you invoke operations and view metric information related
to each component, but it is more general-purpose because it allows you to run small
programs inside the running application to change its state and behavior.

Exporting channels and endpoints to JMX is as simple as adding the lines of XML
configuration shown in Example 13-15.

Example 13-15. Exporting channels and endpoints to JMX

<int-jmx:mbean-export default-domain="streaming-syslog"/>

<context:mbean-server/>

Running the TCP streaming example in the previous section and then starting JConsole
shows the JMX metrics and operations that are available (Figure 13-6). Some examples
are to start and stop the TCP adapter, and to get the min, max, and mean duration of
processing in a MessageHandler.

Figure 13-6. Screenshots of the JConsole JMX application showing the operations and properties
available on the TcpAdapter, channels, and HdfsWritingMessageHandler

A control bus can execute Groovy scripts or Spring Expression Language (SpEL) ex-
pressions, allowing you to manipulate the state of components inside the application

230 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

programmatically. By default, Spring Integration exposes all of its components to be
accessed through a control bus. The syntax for a SpEL expression that stops the TCP
inbound adapter would be @tcpAdapter.stop(). The @ prefix is an operator that will
retrieve an object by name from the Spring ApplicationContext; in this case, the name
is tcpAdapter, and the method to invoke is stop. A Groovy script to perform the same
action would not have the @ prefix. To declare a control bus, add the configuration
shown in Example 13-16.

Example 13-16. Configuring a Groovy-based control bus

<int:channel id="inOperationChannel"/>

<int-groovy:control-bus input-channel="inOperationChannel"/>

By attaching an inbound channel adapter or gateway to the control bus’s input channel,
you can execute scripts remotely. It is also possible to create a Spring MVC application
and have the controller send the message to the control bus’s input channel, as shown
in Example 13-17. This approach might be more natural if you want to provide addi-
tional web application functionality, such as security or additional views. Exam-
ple 13-17 shows a Spring MVC controller that forwards the body of the incoming web
request to the control bus and returns a String-based response.

Example 13-17. Spring MVC control to send message to the control bus

@Controller
public class ControlBusController {

 private @Autowired MessageChannel inOperationChannel;

 @RequestMapping("/admin")
 public @ResponseBody String simple(@RequestBody String message) {

 Message<String> operation = MessageBuilder.withPayload(message).build();
 MessagingTemplate template = new MessagingTemplate();
 Message response = template.sendAndReceive(inOperationChannel, operation);
 return response != null ? response.getPayload().toString() : null;

 }
}

Running the sample application again, we can interact with the control bus over HTTP
using curl to query and modify the state of the inbound TCP adapter (Example 13-18).

Example 13-18. Configuring the control bus

$ cd streaming
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/streaming
… output omitted …
$ curl -X GET --data "tcpAdapter.isRunning()" http://localhost:8080/admin
true
$ curl -X GET --data "tcpAdapter.stop()" http://localhost:8080/admin

Collecting and Loading Data into HDFS | 231

$ curl -X GET --data "tcpAdapter.isRunning()" http://localhost:8080/admin
false
$ curl -X GET --data "tcpAdapter.start()" http://localhost:8080/admin
$ curl -X GET --data "tcpAdapter.isRunning()" http://localhost:8080/admin
true

An Introduction to Spring Batch
The Spring Batch project was started in 2007 as a collaboration between SpringSource
and Accenture to provide a comprehensive batch framework to support the develop-
ment of robust batch applications. These batch applications require performing bulk
processing of large amounts of data that are critical to the operation of a business.
Spring Batch has been widely adopted and used in thousands of enterprise applications
worldwide. Batch jobs have their own set of best practices and domain concepts, gath-
ered over many years of building up Accenture’s consulting business and encapsulated
into the Spring Batch project. Thus, Spring Batch supports the processing of large vol-
umes of data with features such as automatic retries after failure, skipping of records,
job restarting from the point of last failure, periodic batch commits to a transactional
database, reusable components (such as parsers, mappers, readers, processors, writers,
and validators), and workflow definitions. As part of the Spring ecosystem, the Spring
Batch project builds upon the core features of the Spring Framework, such as the use
of the Spring Expression Language. Spring Batch also carries over the design philosophy
of the Spring Framework, which emphasizes a POJO-based development approach and
promotes the creation of maintainable, testable code.

The concept of a workflow in Spring Batch translates to a Spring Batch Job (not to be
confused with a MapReduce job). A batch Job is a directed graph, each node of the
graph being a processing Step. Steps can be executed sequentially or in parallel, de-
pending on the configuration. Jobs can be started, stopped, and restarted. Restarting
jobs is possible since the progress of executed steps in a Job is persisted in a database
via a JobRepository. Jobs are composable as well, so you can have a job of jobs. Fig-
ure 13-7 shows the basic components in a Spring Batch application. The JobLauncher
is responsible for starting a job and is often triggered via a scheduler. The Spring
Framework provides basic scheduling functionality as well as integration with Quartz;
however, often enterprises use their own scheduling software such as Tivoli or Control-
M. Other options to launch a job are through a RESTful administration API, a web
application, or programmatically in response to an external event. In the latter case,
using the Spring Integration project and its many channel adapters for communicating
with external systems is a common choice. You can read more about combining Spring
Integration and Spring Batch in the book Spring Integration in Action [Fisher12].For
additional information on Spring Batch, consult the project website, which contains
links to extensive reference documentation, sample applications, and links to several
books.

232 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

http://static.springsource.org/spring-batch/
http://static.springsource.org/spring-batch/

The processing performed in a step is broken down into three stages—an ItemReader,
ItemProcessor, and ItemWriter—as shown in Figure 13-8. Using an ItemProcessor is
optional.

Figure 13-7. Spring Batch overview

Figure 13-8. Spring Batch step components

One of the primary use cases for Spring Batch is to process the contents of large files
and load the data into a relational database. In this case, a FlatFileItemReader and a
JdbcItemWriter are used along with custom logic either configured declaratively or co-
ded directly in an ItemProcessor. To increase the performance, the Step is “chunked,”
meaning that chunks of data, say 100 rows, are aggregated together and then passed
to the ItemWriter. This allows us to efficiently process a group of records by using the
batch APIs available in many databases to insert data. A snippet of configuration using
the Spring Batch XML namespace that reads from a file and writes to a database is
shown in Example 13-19. In subsequent sections, we will dive into the configuration
of readers, writers, and processors.

Example 13-19. Configuring a Spring Batch step to process flat file data and copy it into a database

<step id="simpleStep">
 <tasklet>
 <chunk reader="flatFileItemReader" processor="itemProcessor" writer=“jdbcItemWriter"
 commit-interval="100"/>
 </chunk>

Collecting and Loading Data into HDFS | 233

 </tasklet>
</step>

Additional features available in Spring Batch allow you to scale up and out the job
execution in order to handle the requirements of high-volume and high-performance
batch jobs. For more information on these topics, refer to the Spring Batch reference
guide or one of the Spring Batch books ([CoTeGreBa11], [Minella11]).

It is important to note that the execution model of a Spring Batch application takes
place outside of the Hadoop cluster. Spring Batch applications can scale up by using
different threads to concurrently process different files or scale out using Spring Batch’s
own master-slave remote partitioning model. In practice, scaling up with threads has
been sufficient to meet the performance requirements of most users. You should try
this option as a first strategy to scale before using remote partitioning. Another execu-
tion model that will be developed in the future is to run a Spring Batch job inside the
Hadoop cluster itself, taking advantage of the cluster’s resource management func-
tionality to scale out processing across the nodes of the cluster, taking into account the
locality of data stored in HDFS. Both models have their advantages, and performance
isn’t the only criteria to decide which execution model to use. Executing a batch job
outside of the Hadoop cluster often enables easier data movement between different
systems and multiple Hadoop clusters.

In the following sections, we will use the Spring Batch framework to process and load
data into HDFS from a relational database. In the section “Exporting Data from
HDFS” on page 243, we will export data from HDFS into a relational database and
the MongoDB document database.

Processing and Loading Data from a Database
To process and load data from a relational database to HDFS, we need to configure a
Spring Batch tasklet with a JdbcItemReader and a HdfsTextItemWriter. The sample
application for this section is located in ./hadoop/batch-import and is based on the
sample code that comes from the book Spring Batch in Action. The domain for the
sample application is an online store that needs to maintain a catalog of the products
it sells. We have modified the example only slightly to write to HDFS instead of a flat
file system. The configuration of the Spring Batch tasklet is shown in Example 13-20.

Example 13-20. Configuring a Spring Batch step to read from a database and write to HDFS

<job id="importProducts" xmlns="http://www.springframework.org/schema/batch">
 <step id="readWriteProducts">
 <tasklet>
 <chunk reader="jdbcReader" writer="hdfsWriter" commit-interval="100"/>
 </tasklet>
 </step>
</job>

<bean id="jdbcReader" class="org.springframework.batch.item.database.JdbcCursorItemReader">

234 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

http://code.google.com/p/springbatch-in-action/

 <property name="dataSource" ref="dataSource"/>
 <property name="sql" value="select id, name, description, price from product"/>
 <property name="rowMapper" ref="productRowMapper"/>
</bean>

<bean id="productRowMapper" class="com.oreilly.springdata.domain.ProductRowMapper"/>

We configure the JdbcCursorItemReader with a standard JDBC DataSource along with
the SQL statement that will select the data from the product table that will be loaded
into HDFS. To start and initialize the database with sample data, run the commands
shown in Example 13-21.

Example 13-21. Commands to initalize and run the H2 database for a Spring Batch application

$ cd hadoop/batch-import
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/start-database

A browser will pop up that lets you browse the contents of the database containing the
product table in addition to the tables for Spring Batch used to implement the job
repository.

The commit interval is set to 100, which is more than the amount of data available in
this simple application, but represents a typical number to use. For each 100 records
read from the database, the transaction that updates the job execution metadata will
be committed to the database. This allows for a restart of the job upon a failure to pick
up where it left off.

The rowMapper property of JdbcCursorItemReader is an implementation of Spring’s Row
Mapper interface, which is part of Spring’s JDBC feature set. The RowMapper interface
provides a simple way to convert a JDBC ResultSet to a POJO when a single row in a
ResultSet maps onto a single POJO instance. Iteration over the ResultSet as well as
exception handling (which is normally quite verbose and error-prone) is encapsulated
by Spring, letting you focus on writing only the required mapping code. The Product
RowMapper used in this application converts each row of the ResultSet object to a Prod
uct Java object and is shown in Example 13-22. The Product class is a simple POJO
with getters and setters that correspond to the columns selected from the product table.

Example 13-22. The ProductRowMapper that converts a row in a ResultSet to a Product object

public class ProductRowMapper implements RowMapper<Product> {

 public Product mapRow(ResultSet rs, int rowNum) throws SQLException {
 Product product = new Product();
 product.setId(rs.getString("id"));
 product.setName(rs.getString("name"));
 product.setDescription(rs.getString("description"));
 product.setPrice(rs.getBigDecimal("price"));
 return product;
 }
}

Collecting and Loading Data into HDFS | 235

The JdbcCursorItemReader class relies on the streaming functionality of the underlying
JDBC driver to iterate through the result set in an efficient manner. You can set the
property fetchSize to give a hint to the driver to load only a certain amount of data
into the driver that runs in the client process. The value to set the fetchSize to depends
on the JDBC driver. For example, in the case of MySQL, the documentation suggests
setting fetchSize to Integer.MIN_VALUE, a nonobvious choice for handling large result
sets efficiently. Of note, Spring Batch also provides the class JdbcPagingItemReader as
another strategy to control how much data is loaded from the database into the client
process as well as the ability to load data from stored procedures.

The last part of the configuration for the application to run is the hdfsWriter shown in
Example 13-23.

Example 13-23. The configuration of the HdfsTextItemWriter

<context:property-placeholder location="hadoop.properties"/>

<hdp:configuration>fs.default.name=${hd.fs}</hdp:configuration>
<hdp:file-system id="hadoopFs"/>

<bean id="hdfsWriter" class="com.oreilly.springdata.batch.item.HdfsTextItemWriter">
 <constructor-arg ref="hadoopFs"/>
 <property name="basePath" value="/import/data/products/"/>
 <property name="baseFilename" value="product"/>
 <property name="fileSuffix" value="txt"/>
 <property name="rolloverThresholdInBytes" value="100"/>
 <property name="lineAggregator">
 <bean class="org.springframework.batch.item.file.transform.PassThroughLineAggregator"/>
 </property>
</bean>

The Hadoop configuration is as we have seen in the previous sections, but the
<hdp:file-system/> is new. It is responsible for creating the appropriate
org.apache.hadoop.fs.FileSystem implementation based on the Hadoop configura-
tion. The possible options are implementations that communicate with HDFS using
the standard HDFS protocol (hdfs://), HFTP (hftp://), or WebHDFS (webhdfs://). The
FileSystem is used by HdfsTextItemWriter to write plain-text files to HDFS. The con-
figuration of the HdfsTextItemWriter’s properties—basePath, baseFileName, and file
Suffix—will result in files being written into the /import/data/products directory with
names such as product-0.txt and product-1.txt. We set rolloverThresholdInBytes to a
very low value for the purposes of demonstrating the rollover behavior.

ItemWriters often require a collaborating object, an implementation of the LineAggre
gator interface that is responsible for converting the item being processed into a string.
In this example, we are using the PassThroughFieldExtractor provided by Spring Batch,
which will delegate to the toString() method of the Product class to create the string.
The toString() method of Product is a simple comma-delimited concatenation of the
ID, name, description, and price values.

236 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

To run the application and import from a database to HDFS, execute the commands
shown in Example 13-24.

Example 13-24. Commands to import data from a database to HDFS

$ cd hadoop/batch-import
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/import

Example 13-25 shows the resulting content in HDFS.

Example 13-25. The imported product data in HDFS

$ hadoop dfs -ls /import/data/products

Found 6 items
-rw-r--r-- 3 mpollack supergroup 114 2012-08-21 11:40 /import/data/products/product-0.txt
-rw-r--r-- 3 mpollack supergroup 113 2012-08-21 11:40 /import/data/products/product-1.txt
-rw-r--r-- 3 mpollack supergroup 122 2012-08-21 11:40 /import/data/products/product-2.txt
-rw-r--r-- 3 mpollack supergroup 119 2012-08-21 11:40 /import/data/products/product-3.txt
-rw-r--r-- 3 mpollack supergroup 136 2012-08-21 11:40 /import/data/products/product-4.txt
-rw-r--r-- 3 mpollack supergroup 51 2012-08-21 11:40 /import/data/products/product-5.txt

$ hadoop dfs -cat /import/data/products/

PR1...210,BlackBerry 8100 Pearl,,124.6
PR1...211,Sony Ericsson W810i,,139.45
PR1...212,Samsung MM-A900M Ace,,97.8

There are many other LineAggregator implementations available in Spring Batch that
give you a great deal of declarative control over what fields are written to the file
and what characters are used to delimit each field. Example 13-26 shows one such
implementation.

Example 13-26. Specifying JavaBean property names to create the String written to HDFS for each
product object

<property name="lineAggregator">
 <bean class="org.springframework.batch.item.file.transform.DelimitedLineAggregator">
 <property name="fieldExtractor">
 <bean class="org.springframework.batch.item.file.transform.BeanWrapperFieldExtractor">
 <property name="names" value="id,price,name"/>
 </bean>
 </property>
 </bean>
</property>

The DelimitedLineAggregator will use a comma to separate fields by default, and the
BeanWrapperFieldExtractor is passed in the JavaBean property names that it will select
from the Product object to write a line of output to HDFS.

Running the application again with this configuration of a LineAggregator will create
files in HDFS that have the content shown in Example 13-27.

Collecting and Loading Data into HDFS | 237

Example 13-27. The imported product data in HDFS using an alternative formatting

$ hadoop dfs -cat /import/data/products/products-0.txt

PR1...210,124.6,BlackBerry 8100 Pearl
PR1...211,139.45,Sony Ericsson W810i
PR1...212,97.8,Samsung MM-A900M Ace

Hadoop Workflows
Hadoop applications rarely consist of one MapReduce job or Hive script. Analysis logic
is usually broken up into several steps that are composed together into a chain of exe-
cution to perform the complete analysis task. In the previous MapReduce and Apache
weblog examples, we used JobRunners, HiveRunners, and PigRunners to execute HDFS
operations and MapReduce, Hive, or Pig jobs, but that is not a completely satisfactory
solution. As the number of steps in an analysis chain increases, the flow of execution
is hard to visualize and not naturally structured as a graph structure in the XML name-
space. There is also no tracking of the execution steps in the analysis chain when we’re
using the various Runner classes. This means that if one step in the chain fails, we must
restart it (manually) from the beginning, making the overall “wall clock” time for the
analysis task significantly larger as well as inefficient. In this section, we will introduce
extensions to the Spring Batch project that will provide structure for chaining together
multiple Hadoop operations into what are loosely called workflows.

Spring Batch Support for Hadoop
Because Hadoop is a batch-oriented system, Spring Batch’s domain concepts and
workflow provide a strong foundation to structure Hadoop-based analysis tasks. To
make Spring Batch “Hadoop aware,” we take advantage of the fact that the processing
actions that compose a Spring Batch Step are pluggable. The plug-in point for a Step
is known as a Tasklet. Spring for Apache Hadoop provides custom Tasklets for HDFS
operations as well as for all types of Hadoop jobs: MapReduce, Streaming, Hive, and
Pig. This allows for creating workflows as shown in Figure 13-9.

There is support in the Eclipse-based Spring Tool Suite (STS) to support the visual
authoring of Spring Batch jobs. Figure 13-10 shows the equivalent diagram to Fig-
ure 13-9 inside of STS.

238 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

Figure 13-9. Steps in a Spring Batch application that execute Hadoop HDFS operations and run Pig,
MapReduce, and Hive jobs

Figure 13-10. Creating Spring Batch jobs in Eclipse

Hadoop Workflows | 239

The underlying XML for a Spring Batch job with a linear flow of steps has the general
pattern shown in Example 13-28.

Example 13-28. Spring Batch job definition for a sequence of steps

<job id="job">
 <step id="stepA" next="stepB"/>
 <step id="stepB" next="stepC"/>
 <step id="stepC"/>
</job>

You can also make the flow conditional based on the exit status of the step. There are
several well-known ExitStatus codes that a step returns, the most common of which
are COMPLETED and FAILED. To create a conditional flow, you use the nested next element
of the step, as shown in Example 13-29.

Example 13-29. Spring Batch job definition for a conditional sequence of steps

<job id="job">
 <step id="stepA">
 <next on="FAILED" to="stepC"/>
 <next on="*" to="stepB"/>
 </step>
 <step id="stepB" next="stepC"/>
 <step id="stepC"/>
</job>

In this example, if the exit code matches FAILED, the next step executed is stepC; other-
wise, stepB is executed followed by stepC.

There is a wide range of ways to configure the flow of a Spring that we will not cover
in this section. To learn more about how to configure more advanced job flows, see the
reference documentation or one of the aforementioned Spring Batch books.

To configure a Hadoop-related step, you can use the XML namespace provided by
Spring for Apache Hadoop. Next, we’ll show how we can configure the wordcount
example as a Spring Batch application, reusing the existing configuration of a MapRe-
duce and HDFS script that were part of the standalone Hadoop application examples
used previously. Then we will show how to configure other Hadoop-related steps, such
as for Hive and Pig.

Wordcount as a Spring Batch Application
The wordcount example has two steps: importing data into HDFS and then running a
MapReduce job. Example 13-30 shows the Spring Batch job representing the workflow
using the Spring Batch XML namespace. We use the namespace prefix batch to distin-
guish the batch configuration from the Hadoop configuration.

240 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

Example 13-30. Setting up the Spring Batch job to perform HDFS and MapReduce steps

<batch:job id="job1">
 <batch:step id="import" next="wordcount">
 <batch:tasklet ref="scriptTasklet"/>
 </batch:step>

 <batch:step id="wordcount">
 <batch:tasklet ref="wordcountTasklet"/>
 </batch:step>
</batch:job>

<tasklet id="wordcountTasklet" job-ref="wordcountJob"/>
<script-tasklet id="scriptTasklet" script-ref="hdfsScript">

<!-- MapReduce job and HDFS script as defined in previous examples -->
<job id="wordcountJob"
 input-path="${wordcount.input.path}"
 output-path="${wordcount.output.path}"
 mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"
 reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/>

<script id="hdfsScript" location="copy-data.groovy" >
 <property name="inputPath" value="${wordcount.input.path}"/>
 <property name="outputPath" value="${wordcount.output.path}"/>
 <property name="localResource" value="${local.data}"/>
</script>

It is common to parameterize a batch application by providing job parameters that are
passed in when the job is launched. To change the batch job to reference these job
parameters instead of ones that comes from static property files, we need to make a few
changes to the configuration. We can retrieve batch job parameters using SpEL, much
like how we currently reference variables using ${...} syntax.

The syntax of SpEL is similar to Java, and expressions are generally just one line of code
that gets evaluated. Instead of using the syntax ${...} to reference a variable, use the
syntax #{...} to evaluate an expression. To access the Spring Batch job parameters,
we’d use the expression #{jobParameters['mr.input']}. The variable jobParameters is
available by default when a bean is placed in Spring Batch’s step scope. The configu-
ration of the MapReduce job and HDFS script, then, looks like Example 13-31.

Example 13-31. Linking the Spring Batch Tasklets to Hadoop Job and Script components

<job id="wordcount-job" scope="step"
 input-path="#{jobParameters['mr.input']}"
 output-path="#{jobParameters['mr.output']}"
 mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"
 reducer="org.apache.hadoop.examples.WordCount.IntSumReducer"/>

<script id="hdfsScript" location="copy-files.groovy" scope="step">
 <property name="localSourceFile" value="#{jobParameters['localData']}"/>
 <property name="hdfsInputDir" value="#{jobParameters['mr.input']}"/>

Hadoop Workflows | 241

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/expressions.html

 <property name="hdfsOutputDir" value="#{jobParameters['mr.output']}"/>
</script>

The main application that runs the batch application passes in values for these param-
eters, but we could also set them using other ways to launch a Spring Batch application.
The CommandLineJobRunner, administrative REST API, or the administrative web appli-
cation are common choices. Example 13-32 is the main driver class for the sample
application.

Example 13-32. Main application that launched a batch job

ApplicationContext context =
 new ClassPathXmlApplicationContext("classpath:/META-INF/spring/*-context.xml");
JobLauncher jobLauncher = context.getBean(JobLauncher.class);
Job job = context.getBean(Job.class);
jobLauncher.run(job, new JobParametersBuilder()
 .addString("mr.input", "/user/gutenberg/input/word/")
 .addString("mr.output", "/user/gutenberg/output/word/")
 .addString("localData", "./data/nietzsche-chapter-1.txt")
 .addDate("date", new Date()).toJobParameters());

To run the batch application, execute the commands shown in Example 13-33.

Example 13-33. Commands to run the wordcount batch application

$ cd hadoop/batch-wordcount
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/batch-wordcount

Hive and Pig Steps
To execute a Hive script as part of a Spring Batch workflow, use the Hive Tasklet
element, as shown in Example 13-34.

Example 13-34. Configuring a Hive Tasklet

<job id="job1" xmlns="http://www.springframework.org/schema/batch">
 <step id="import" next="hive">
 <tasklet ref="scriptTasklet"/>
 </step>

 <step id="hive">
 <tasklet ref="hiveTasklet"/>
 </step>
</job>

<hdp:hive-client-factory host="${hive.host}" port="${hive.port}"/>

<hive-tasklet id="hiveTasklet">
 <hdp:script location="analysis.hsql"/>
</hdp:hive-tasklet>

242 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

To execute a Pig script as part of a Spring Batch workflow, use the Pig Tasklet element
(Example 13-35).

Example 13-35. Configuring a Pig Tasklet

<job id="job1" xmlns="http://www.springframework.org/schema/batch">
 <step id="import" next="pig">
 <tasklet ref="scriptTasklet"/>
 </step>

 <step id="pig">
 <tasklet ref="pigTasklet"/>
 </step>
</job>

<pig-factory/>

<pig-tasklet id="pigTasklet">
 <script location="analysis.pig">
 <arguments>
 piggybanklib=${pig.piggybanklib}
 inputPath=${pig.inputPath}
 outputPath=${pig.outputPath}
 </arguments>
 </script>
</pig-tasklet>

Exporting Data from HDFS
The results from data analysis in Hadoop are often copied into structured data stores,
such as a relational or NoSQL database, for presentation purposes or further analysis.
One of the main use cases for Spring Batch is moving data back between files and
databases and processing it along the way. In this section, we will use Spring Batch to
export data from HDFS, perform some basic processing on the data, and then store the
data outside of HDFS. The target data stores are a relational database and MongoDB.

From HDFS to JDBC
Moving the result data created from MapReduce jobs located in HDFS into a relational
database is very common. Spring Batch provides many out-of-the-box components that
you can configure to perform this activity. The sample application for this section is
located in ./hadoop/batch-extract and is based on the sample code that comes from the
book Spring Batch in Action. The domain for the sample application is an online store
that needs to maintain a catalog of the products it sells. The application as it was orig-
inally written reads product data from flat files on a local filesystem and then writes the
product data into a product table in a relational database. We have modified the ex-
ample to read from HDFS and also added error handling to show an additional Spring
Batch feature.

Exporting Data from HDFS | 243

http://code.google.com/p/springbatch-in-action/
http://code.google.com/p/springbatch-in-action/

To read from HDFS instead of a local filesystem, we need to register a HdfsResource
Loader with Spring to read data from HDFS using Spring’s Resource abstraction. This
lets us use the Spring Batch’s existing FlatFileItemReader class, as it is based on the
Resource abstraction. Spring’s Resource abstraction provides a uniform way to read an
InputStream from a variety of sources such as a URL (http, ftp), the Java ClassPath, or
the standard filesystem. The Resource abstraction also supports reading from multiple
source locations through the use of Ant-style regular expressions.To configure Spring
to be able to read from HDFS as well as make HDFS the default resource type that will
be used (e.g., hdfs://hostname:port versus file://), add the lines of XML shown in Ex-
ample 13-36 to a Spring configuration file.

Example 13-36. Configuring the default resource loader to use HDFS

<context:property-placeholder location="hadoop.properties"/>

<hdp:configuration>fs.default.name=${hd.fs}</hdp:configuration>
<hdp:resource-loader id="hadoopResourceLoader"/>

<bean id="defaultResourceLoader"
 class="org.springframework.data.hadoop.fs.CustomResourceLoaderRegistrar">
 <property name="loader" ref="hadoopResourceLoader"/>
</bean>

The basic concepts of Spring Batch—such as jobs, steps, ItemReader, processors, and
writers—were explained in “An Introduction to Spring Batch” on page 232. In this
section, we will configure these components and discuss some of their configuration
properties. However, we can’t go into detail on all the ways to configure and run Spring
Batch applications; there is a great deal of richness in Spring Batch relating to error
handling, notifications, data validation, data processing, and scaling that we simply
can’t cover here. For additional information, you should consult the Spring Reference
manual or one of the books on Spring Batch mentioned earlier.

Example 13-37 is the top-level configuration to create a Spring Batch job with a single
step that processes the output files of a MapReduce job in HDFS and writes them to a
database.

Example 13-37. Configuration of a Spring Batch job to read from HDFS and write to a relational
database

<job id="exportProducts">
 <step id="readWriteProducts">
 <tasklet>
 <chunk reader="hdfsReader" processor="processor" writer="jdbcWriter"
 commit-interval="100" skip-limit="5">
 <skippable-exception-classes>
 <include class="org.springframework.batch.item.file.FlatFileParseException"/>
 </skippable-exception-classes>
 </chunk>
 <listeners>
 <listener ref="jdbcSkipListener"/>
 </listeners>

244 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

http://static.springsource.org/spring/docs/current/spring-framework-reference/html/resources.html

 </tasklet>
 </step>
</job>

The job defines only one step, which contains a reader, processor, and a writer. The
commit interval refers to the number of items to process and aggregate before com-
mitting them to the database. In practice, the commit interval value is varied to deter-
mine which value will result in the highest performance. Values between 10 and a few
hundred are what you can expect to use for this property. One of Spring Batch’s features
relating to resilient handling of errors is shown here: the use of the skip-limit and
skippable-exception-classes properties. These properties determine how many times
a specific error in processing will be allowed to occur before failing the step. The skip-
limit determines how many times an exception can be thrown before failing the job.
In this case, we are tolerating up to five throws of a FlatFileParseException. To keep
track of all the lines that were not processed correctly, we configure a listener that will
write the offending data into a separate database table. The listener extends the Spring
Batch class SkipListenerSupport, and we override the onSkipInRead(Throwable t) that
provides information on the failed import line.

Since we are going to read many files created from a MapReduce job (e.g., part-r-00001
and part-r-00002), we use Spring Batch’s MultiResourceItemReader, passing in the
HDFS directory name as a job parameter and a reference to a FlatFileItemReader that
does the actual work of reading individual files from HDFS. See Example 13-38.

Example 13-38. Configuration of a Spring Batch HDFS reader

<bean id="hdfsReader"
 class="org.springframework.batch.item.file.MultiResourceItemReader" scope="step">
 <property name="resources" value="#{jobParameters['hdfsSourceDirectory']}"/>
 <property name="delegate" ref="flatFileItemReader"/>
</bean>

<bean id="flatFileItemReader"
 class="org.springframework.batch.item.file.FlatFileItemReader">
 <property name="lineMapper">
 <bean class="org.springframework.batch.item.file.mapping.DefaultLineMapper">
 <property name="lineTokenizer">
 <bean
 class="org.springframework.batch.item.file.transform.DelimitedLineTokenizer">
 <property name="names" value="id, name, description, price"/>
 </bean>
 </property>
 <property name="fieldSetMapper">
 <bean class="com.oreilly.springdata.batch.item.file.ProductFieldSetMapper"/>
 </property>
 </bean>
 </property>
</bean>

When launching the job, we provide the job parameter named hdfsSourceDirectory
either programmatically, or through the REST API/web application if using Spring

Exporting Data from HDFS | 245

Batch’s administration features. Setting the scope of the bean to step enables resolution
of jobParameter variables. Example 13-39 uses a main Java class to load the Spring
Batch configuration and launch the job.

Example 13-39. Launching a Spring Batch job with parameters

public static void main(String[] args) throws Exception {

 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("classpath*:/META-INF/spring/*.xml")
 JobLauncher jobLauncher = ctx.getBean(JobLauncher.class);
 Job job = ctx.getBean(Job.class);

 jobLauncher.run(job, new JobParametersBuilder()
 .addString("hdfsSourceDirectory", "/data/analysis/results/part-*")
 .addDate("date", new Date())
 .toJobParameters());
}

The MultiResourceItemReader class is what allows multiple files to be processed from
the HDFS directory /data/analysis/results that have a filename matching the expression
part-*. Each file that is found by the MultiResourceItemReader is processed by the
FlatFileItemReader. A sample of the content in each file is shown in Example 13-40.
There are four columns in this data, representing the product ID, name, description,
and price. (The description is empty in the sample data.)

Example 13-40. Sample content of HDFS file being exported into a database

PR1...210,BlackBerry 8100 Pearl,,124.60cl
PR1...211,Sony Ericsson W810i,,139.45
PR1...212,Samsung MM-A900M Ace,,97.80
PR1...213,Toshiba M285-E 14,,166.20
PR1...214,Nokia 2610 Phone,,145.50
…
PR2...315,Sony BDP-S590 3D Blu-ray Disk Player,,86.99
PR2...316,GoPro HD HERO2,,241.14
PR2...317,Toshiba 32C120U 32-Inch LCD HDTV,,239.99

We specify FlatFileItemReader’s functionality by configuring two collaborating objects
of the DefaultLineMapper. The first is the DelimitedLineTokenizer provided by Spring
Batch, which reads a line of input, and by default, tokenizes it based on commas. The
field names and each value of the token are placed into Spring Batch’s FieldSet object.
The FieldSet object is similar to a JDBC result set but for data read from files. It allows
you to access fields by name or position and to convert the values of those fields to Java
types such as String, Integer, or BigDecimal. The second collaborating object is the
ProductFieldSetMapper, provided by us, which converts the FieldSet to a custom do-
main object, in this case the Product class.

The ProductFieldSetMapper is extremely similar to the ProductRowMapper used in the
previous section when reading from the database and writing to HDFS. See Exam-
ple 13-41.

246 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

Example 13-41. Converting a FieldSet to a Product domain object

public class ProductFieldSetMapper implements FieldSetMapper<Product> {

 public Product mapFieldSet(FieldSet fieldSet) {
 Product product = new Product();
 product.setId(fieldSet.readString("id"));
 product.setName(fieldSet.readString("name"));
 product.setDescription(fieldSet.readString("description"));
 product.setPrice(fieldSet.readBigDecimal("price"));
 return product;
 }
}

The two parts that remain to be configured are the ItemProcessor and ItemWriter; they
are shown in Example 13-42.

Example 13-42. Configuration of a Spring Batch item process and JDBC writer

<bean id="processor" class="com.oreilly.springdata.batch.item.ProductProcessor"/>

<bean id="jdbcWriter" class="org.springframework.batch.item.database.JdbcBatchItemWriter">
 <property name="dataSource" ref="dataSource"/>
 <property name="sql"
 value="INSERT INTO PRODUCT (ID, NAME, PRICE) VALUES (:id, :name, :price)"/>
 <property name="itemSqlParameterSourceProvider">
 <bean class="org.sfw.batch.item.database.BeanPropertyItemSqlParameterSourceProvider"/>
 </property>
</bean>

ItemProcessors are commonly used to transform, filter, or validate the data. In Exam-
ple 13-43, we use a simple filter that will pass only through records whose product
description ID starts with PR1. Returning a null value from an ItemProcessor is the
contract to filter out the item. Note that if you do not want to perform any processing
and directly copy the input file to the database, you can simply remove the processor
attribute from the tasklet’s chunk XML configuration.

Example 13-43. A simple filtering ItemProcessor

public class ProductProcessor implements ItemProcessor<Product, Product> {

 @Override
 public Product process(Product product) throws Exception {
 if (product.getId().startsWith("PR1")) {
 return null;
 } else {
 return product;
 }
 }
}

The JdbcBatchItemWriter groups together a batch of SQL statements to commit to-
gether to the database. The batch size is equal to the commit interval defined previously.

Exporting Data from HDFS | 247

We connect to the database using a standard JDBC DataSource, and the SQL statement
is specified inline. What is nice about the SQL statement is that we can use named
parameters instead of positional ? placeholders. This is a feature provided by BeanPro
pertyItemSqlParameterSourceProvider, which associates the names of properties of the
Product object with the :name values inside the SQL statement. Example 13-44 uses the
H2 database and the schema for the product table.

Example 13-44. Schema definition of the product table

create table product (
 id character(9) not null,
 name character varying(50),
 description character varying(255),
 price float,
 update_timestamp timestamp,
 constraint product_pkey primary key (id)
);

To start the database, copy the sample data into HDFS, create the Spring Batch schema,
and execute the commands shown in Example 13-45. Running these commands will
also launch the H2 interactive web console.

Example 13-45. Building the example and starting the database

$ cd hadoop/batch-extract
$ mvn clean package appassembler:assemble
$ sh ./target/appassembler/bin/start-database &

Next run the export process, as shown in Example 13-46.

Example 13-46. Running the export job

$ sh ./target/appassembler/bin/export
INFO - Loaded JDBC driver: org.h2.Driver
INFO - Established shared JDBC Connection: conn0: \
url=jdbc:h2:tcp://localhost/mem:hadoop_export user=SA
INFO - No database type set, using meta data indicating: H2
INFO - No TaskExecutor has been set, defaulting to synchronous executor.
INFO - Job: [FlowJob: [name=exportProducts]] launched with the following parameters: \
 [{hdfsSourceDirectory=/data/analysis/results/part-*, date=1345578343793}]
INFO - Executing step: [readWriteProducts]
INFO - Job: [FlowJob: [name=exportProducts]] completed with the following parameters: \
 [{hdfsSourceDirectory=/data/analysis/results/part-*, date=1345578343793}] and the \
 following status: [COMPLETED]

We can view the imported data using the H2 web console. Spring Batch also has an
administrative console, where you can browse what jobs are available to be run, as well
as look at the status of each job execution. To launch the administrative console, run
sh ./target/appassembler/bin/launchSpringBatchAdmin, open a browser to http://lo-
calhost:8080/springbatchadmin/jobs/executions, and select the recent job execution link
from the table. By clicking on the link for a specific job execution, you can view details
about the state of the job.

248 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

From HDFS to MongoDB
To write to MongoDB instead of a relational database, we need to change the Item
Writer implementation from JdbcBatchItemWriter to MongoItemWriter. Exam-
ple 13-47 shows a simple implementation of MongoItemWriter that writes the list of
items using MongoDB’s batch functionality, which inserts the items into the collection
by making a single call to the database.

Example 13-47. An ItemWriter implementation that writes to MongoDB

public class MongoItemWriter implements ItemWriter<Object> {

 private MongoOperations mongoOperations;
 private String collectionName = "/data";

 // constructor and setters omitted.

 @Override
 public void write(List<? extends Object> items) throws Exception {
 mongoOperations.insert(items, collectionName);
 }
}

Spring’s MongoTemplate (which implements the interface MongoOperations) provides
support for converting Java classes to MongoDB’s internal data structure format, DbOb
ject. We can specify the connectivity to MongoDB using the Mongo XML namespace.
Example 13-48 shows the configuration of MongoItemWriter and its underlying depen-
dencies to connect to MongoDB.

Example 13-48. Configuration of a Spring Batch job to read from HDFS and write to MongoDB

<job id="exportProducts">
 <step id="readWriteProducts">
 <tasklet>
 <chunk reader="reader" writer="mongoWriter" commit-interval="100" skip-limit="5">
 <skippable-exception-classes>
 <include class="org.springframework.batch.item.file.FlatFileParseException"/>
 </skippable-exception-classes>
 </chunk>
 </tasklet>
 </step>
</job>

<!-- reader configuration is the same as before -->

<bean id="mongoWriter" class="com.oreilly.springdata.batch.item.mongodb.MongoItemWriter">
 <constructor-arg ref="mongoTemplate"/>
 <property name="collectionName" value="products"/>
</bean>

<bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
 <constructor-arg ref="mongo"/>
 <constructor-arg name="databaseName" value="test"/>

Exporting Data from HDFS | 249

</bean>

<mongo:mongo host="localhost" port="27017"/>

Running the application again will produce the contents of the products collection in
the test database, shown in Example 13-49.

Example 13-49. Viewing the exported products collection in the MongoDB shell

$ mongo
> use test
> db.products.find()
{"_id" : "PR 210", "PRICE" : "124.60", "NAME" : "BlackBerry 8100 Pearl",
 "DESCRIPTION" : ""}
{"_id" : "PR 211", "PRICE" : "139.45", "NAME" : "Sony Ericsson W810i", "DESCRIPTION" : ""}
{"_id" : "PR 212", "PRICE" : "97.80", "NAME" : "Samsung MM-A900M Ace", "DESCRIPTION" : ""}

(output truncated)

This example shows how various Spring Data projects build upon each other to create
important new features with a minimal amount of code. Following the same pattern
to implement a MongoItemWriter, you can also easily create ItemWriters for Redis or
GemFire that would be as simple as the code shown in this section.

Collecting and Loading Data into Splunk
Splunk collects, indexes, searches, and monitors large amounts of machine-generated
data. Splunk can process streams of real-time data as well as historical data. The first
version of Splunk was released in 2005, with a focus on analyzing the data generated
inside of datacenters to help solve operational infrastructure problems. As such, one
of its core capabilities is moving data generated on individual machines into a central
repository, as well as having out-of-the box knowledge of popular log file formats and
infrastructure software like syslog. Splunk’s base architecture consists of a splunkd
daemon that processes and indexes streaming data, and a web application that allows
users to search and create reports. Splunk can scale out by adding separate indexer,
search, and forwarder instances as your data requirements grow. For more details on
how to install, run, and develop with Splunk, refer to the product website, as well as
the book Exploring Splunk.

While the process of collecting log files and syslog data are supported out-of-the-box
by Splunk, there is still a need to collect, transform, and load data into Splunk that
comes from a variety of other sources, in order to reduce the need to use regular ex-
pressions when analyzing data. There is also a need to transform and extract data out
of Splunk into other databases and filesystems. To address these needs, Spring Inte-
gration inbound and outbound channel adapters were created, and Spring Batch sup-
port is on the road map. At the time of this writing, the Spring Integration channel
adapters for Splunk are located in the GitHub repository for Spring Integration exten-
sions. The adapters support all the ways you can get data in and out of Splunk. The

250 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

http://www.splunk.com/
http://www.splunk.com/goto/book
https://github.com/SpringSource/spring-integration-extensions

inbound adapter supports block and nonblocking searches, saved and real time
searches, and the export mode. The outbound adapters support putting data into
Splunk through its RESTful API, streams, or TCP. All of the functionality of Splunk is
exposed via a comprehensive REST API, and several language SDKs are available to
make developing with the REST API as simple as possible. The Spring Integration
adapters make use of the Splunk Java SDK , also available on Github.

As an introduction to using Splunk with Spring Integration, we will create an applica-
tion that stores the results from a Twitter search into Splunk. The configuration for this
application is shown in Example 13-50.

Example 13-50. Configuring an application to store Twitter search results in Splunk

<context:property-placeholder location="twitter.properties,splunk.properties" />

<bean id="twitterTemplate"
 class="org.springframework.social.twitter.api.impl.TwitterTemplate">
 <constructor-arg value="${twitter.oauth.consumerKey}" />
 <constructor-arg value="${twitter.oauth.consumerSecret}" />
 <constructor-arg value="${twitter.oauth.accessToken}" />
 <constructor-arg value="${twitter.oauth.accessTokenSecret}" />
</bean>

<int-splunk:server id="splunkServer"
 host="${splunk.host}" port="${splunk.port}"
 userName="${splunk.userName}" password="${splunk.password}"
 owner="${splunk.owner}"/>

<int:channel id="input"/>

<int:channel id="output"/>

<int-twitter:search-inbound-channel-adapter id="searchAdapter" channel="input"
 query="#voteobama OR #voteromney OR #votebieber">
 <int:poller fixed-rate="5000" max-messages-per-poll="50" />
</int-twitter:search-inbound-channel-adapter>

<int:chain input-channel="input" output-channel="output">
 <int:filter ref="tweetFilter"/>
 <int:transformer ref="splunkTransformer"/>
</int:chain>

<int-splunk:outbound-channel-adapter id="splunkOutboundChannelAdapter"
 channel="output" auto-startup="true"
 splunk-server-ref="splunkServer" pool-server-connection="true"
 sourceType="twitter-integration" source="twitter" ingest="SUBMIT"/>

<!-- tweetFilter and splunkTransformer bean definitions omitted -->

The Spring Social project provides the foundation for connecting to Twitter with
OAuth, and also provides support for working with Facebook, LinkedIn, TripIt, Four-
square, and dozens of other social Software-as-a-Service providers. Spring Social’s
TwitterTemplate class is used by the inbound channel adapter to interact with Twitter.

Collecting and Loading Data into Splunk | 251

http://www.springsource.org/spring-social

This requires you to create a new application on the Twitter Developer website, in order
to access the full range of functionality offered by Twitter. To connect to the Splunk
server, the XML namepace <int-splunk:server/> is used, providing host/port infor-
mation as well as user credentials (which are externally parameterized using Spring’s
property placeholder).

The Twitter inbound channel adapter provides support for receiving tweets as Timeline
Updates, Direct Messages, Mention Messages, or Search Results. Note that there will
soon be support for consuming data from the Twitter garden hose, which provides a
randomly selected stream of data capped at a small percent of the full stream. In Ex-
ample 13-50, the query looks for hashtags related to the United States 2012 presidental
election and one hashtag to vote for Justin Bieber to win various award shows. The
processing chain applies a filter and then converts the Tweet payload object into a data
structure with a format optimized to help Splunk index and search the tweets. In the
sample application, the filter is set to be a pass-through. The outbound channel adapter
writes to the Splunk source with the REST API, specified by the attribute inject="SUB
MIT". The data is written to the Splunk source named twitter and uses the default index.
You can also set the index attribute to specify that data should be written to the non-
default index.

To run the example and see who is the most popular candidate (or pseudo-candidate),
follow the directions in the directory splunk/tweets. Then via the Splunk web applica-
tion you can create a search, such as source="twitter" | regex tags="^voteobama$|
^votebieber$|^voteromney$" | top tags, to get a graph that shows the relative popu-
larity of those individual hashtags.

252 | Chapter 13: Creating Big Data Pipelines with Spring Batch and Spring Integration

PART VI

Data Grids

CHAPTER 14

GemFire: A Distributed Data Grid

vFabric™GemFire® (GemFire) is a commercially licensed data management platform
that provides access to data throughout widely distributed architectures. It is available
as a standalone product and as a component of the VMware vFabric Suite. This chapter
provides an overview of Spring Data GemFire. We’ll begin by introducing GemFire and
some basic concepts that are prerequisite to developing with GemFire. Feel free to skip
to the section “Configuring GemFire with the Spring XML Namespace” on page 258
if you are already familiar with GemFire.

GemFire in a Nutshell
GemFire provides an in-memory data grid that offers extremely high throughput, low
latency data access, and scalability. Beyond a distributed cache, GemFire provides ad-
vanced features including:

• Event notification

• OQL (Object Query Language) query syntax

• Continuous queries

• Transaction support

• Remote function execution

• WAN communications

• Efficient and portable object serialization (PDX)

• Tools to aid system administrators in managing and configuring the GemFire dis-
tributed system

GemFire may be configured to support a number of distributed system topologies and
is completely integrated with the Spring Framework. Figure 14-1 shows a typical client
server configuration for a production LAN. The locator acts as a broker for the dis-
tributed system to support discovery of new member nodes. Client applications use
the locator to acquire connections to cache servers. Additionally, server nodes use the

255

locator to discover each other. Once a server comes online, it communicates directly
with its peers. Likewise, once a client is initialized, it communicates directly with cache
servers. Since a locator is a single point of failure, two instances are required for
redundancy.

Figure 14-1. GemFire client server topology

Simple standalone configurations for GemFire are also possible. Note that the book’s
code samples are configured very simply as a single process with an embedded cache,
suitable for development and integration testing.

In a client server scenario, the application process uses a connection pool (Fig-
ure 14-2) to manage connections between the client cache and the servers. The con-
nection pool manages network connections, allocates threads, and provides a number
of tuning options to balance resource usage and performance. The pool is typically
configured with the address of the locator(s) [not shown in Figure 14-2]. Once the
locator provides a server connection, the client communicates directly with the server.
If the primary server becomes unavailable, the pool will acquire a connection to an
alternate server if one is available.

Figure 14-2. The connection pool

256 | Chapter 14: GemFire: A Distributed Data Grid

Caches and Regions
Conceptually, a cache is a singleton object that provides access to a GemFire member
and offers a number of configuration options for memory tuning, network communi-
cations, and other features. The cache also acts as a container for regions, which provide
data management and access.

A region is required to store and retrieve data from the cache. Region is an interface that
extends java.uti.Map to perform basic data access using familiar key/value semantics.
The Region interface is wired into classes that require it, so the actual region type is
decoupled from the programming model (with some caveats, the discovery of which
will be left as an exercise for the reader). Typically, each region is associated with one
domain object, similar to a table in a relational database. Looking at the sample code,
you will see three regions defined: Customer, Product, and Order. Note that GemFire
does not manage associations or enforce relational integrity among regions.

GemFire includes the following types of regions:

Replicated
Data is replicated across all cache members that define the region. This provides
very high read performance, but writes take longer due to the need to perform the
replication.

Partitioned
Data is partitioned into buckets among cache members that define the region. This
provides high read and write performance and is suitable for very large datasets
that are too big for a single node.

Local
Data exists only on the local node.

Client
Technically, a client region is a local region that acts as a proxy to a replicated or
partitioned region hosted on cache servers. It may hold data created or fetched
locally; alternatively, it can be empty. Local updates are synchronized to the cache
server. Also, a client region may subscribe to events in order to stay synchronized
with changes originating from remote processes that access the same region.

Hopefully, this brief overview gives you a sense of GemFire’s flexibility and maturity.
A complete discussion of GemFire options and features is beyond the scope of this
book. Interested readers will find more details on the product website.

How to Get GemFire
The vFabric GemFire website provides detailed product information, reference guides,
and a link to a free developer download, limited to three node connections. For a more
comprehensive evaluation, a 60-day trial version is also available.

How to Get GemFire | 257

http://www.vmware.com/products/application-platform/vfabric-gemfire

The product download is not required to run the code samples included
with this book. The GemFire jar file that includes the free developer
license is available in public repositories and will be automatically
downloaded by build tools such as Maven and Gradle when you declare
a dependency on Spring Data GemFire. A full product install is neces-
sary to use locators, the management tools, and so on.

Configuring GemFire with the Spring XML Namespace
Spring Data GemFire includes a dedicated XML namespace to allow full configuration
of the data grid. In fact, the Spring namespace is considered the preferred way to con-
figure GemFire, replacing GemFire’s native cache.xml file. GemFire will continue to
support cache.xml for legacy reasons, but you can now do everything in Spring XML
and take advantage of the many wonderful things Spring has to offer, such as modular
XML configuration, property placeholders, SpEL, and environment profiles. Behind
the namespace, Spring Data GemFire makes extensive use of Spring’s FactoryBean pat-
tern to simplify the creation and initialization of GemFire components.

GemFire provides several callback interfaces, such as CacheListener, CacheWriter, and
CacheLoader to allow developers to add custom event handlers. Using the Spring IoC
container, these may configured as normal Spring beans and injected into GemFire
components. This is a significant improvement over cache.xml, which provides rela-
tively limited configuration options and requires callbacks to implement GemFire’s
Declarable interface.

In addition, IDEs such as the Spring Tool Suite (STS) provide excellent support for
XML namespaces, such as code completion, pop-up annotations, and real-time vali-
dation, making them easy to use.

The following sections are intended to get you started using the Spring XML namespace
for GemFire. For a more comprehensive discussion, please refer to the Spring Data
GemFire reference guide at the project website.

Cache Configuration
To configure a GemFire cache, create a Spring bean definition file and add the Spring
GemFire namespace. In STS (Figure 14-3), select the project and open the context menu
(right-click) and select New→Spring Bean Configuration File. Give it a name and click
Next.

258 | Chapter 14: GemFire: A Distributed Data Grid

http://www.springsource.org/spring-gemfire/
http://www.springsource.org/spring-gemfire/

Figure 14-3. Create a Spring bean definition file in STS

In the XSD namespaces view, select the gfe namespace (Figure 14-4).

Notice that, in addition to the gfe namespace, there is a gfe-data name-
space for Spring Data POJO mapping and repository support. The gfe
namespace is used for core GemFire configuration.

Click Finish to open the bean definition file in an XML editor with the correct name-
space declarations. (See Example 14-1.)

Configuring GemFire with the Spring XML Namespace | 259

Figure 14-4. Selecting Spring XML namespaces

Example 14-1. Declaring a GemFire cache in Spring configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:gfe="http://www.springframework.org/schema/gemfire"
 xsi:schemaLocation="http://www.springframework.org/schema/gemfire
 http://www.springframework.org/schema/gemfire/spring-gemfire.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <gfe:cache/>

</beans>

260 | Chapter 14: GemFire: A Distributed Data Grid

Now use the gfe namespace to add a cache element. That’s it! This simple cache dec-
laration will create an embedded cache, register it in the Spring ApplicationContext as
gemfireCache, and initialize it when the context is created.

Prior releases of Spring Data GemFire created default bean names using
hyphens (e.g., gemfire-cache). As of the 1.2.0 release, these are replaced
with camelCase names to enable autowiring via annotations (@Auto
wired). The old-style names are registered as aliases to provide backward
compatibility.

You can easily change the bean name by setting the id attribute on the cache element.
However, all other namespace elements assume the default name unless explicitly
overridden using the cache-ref attribute. So you can save yourself some work by fol-
lowing the convention.

The cache element provides some additional attributes, which STS will happily suggest
if you press Ctrl-Space. The most significant is the properties-ref attribute. In addition
to the API, GemFire exposes a number of global configuration options via external
properties. By default, GemFire looks for a file called gemfire.properties in all the usual
places: the user’s home directory, the current directory, and the classpath. While this
is convenient, it may result in unintended consequences if you happen to have these
files laying around. Spring alleviates this problem by offering several better alternatives
via its standard property loading mechanisms. For example, you can simply construct
a java.util.Properties object inline or load it from a properties file located on the
classpath or filesystem. Example 14-2 uses properties to configure GemFire logging.

Example 14-2. Referencing properties to configure GemFire

Define properties inline:

<util:properties id="props">
 <prop key="log-level">info</prop>
 <prop key="log-file">gemfire.log</prop>
</util:properties>

<gfe:cache properties-ref="props" />

Or reference a resource location:

<util:properties id="props" location="gemfire-cache.properties" />

<gfe:cache properties-ref="props" />

It is generally preferable to maintain properties of interest to system
administrators in an agreed-upon location in the filesystem rather than
defining them in Spring XML or packaging them in .jar files.

Configuring GemFire with the Spring XML Namespace | 261

Note the use of Spring’s util namespace to create a Properties object. This is related
to, but not the same as, Spring’s property placeholder mechanism, which uses token-
based substitution to allow properties on any bean to be defined externally from a
variety of sources. Additionally, the cache element includes a cache-xml-location at-
tribute to enable the cache to be configured with GemFire’s native configuration
schema. As previously noted, this is mostly there for legacy reasons.

The cache element also provides some pdx-* attributes required to enable and configure
GemFire’s proprietary serialization feature (PDX). We will address PDX in “Repository
Usage” on page 271.

For advanced cache configuration, the cache element provides additional attributes for
tuning memory and network communications (shown in Figure 14-5) and child ele-
ments to register callbacks such as TransactionListers, and TransactionWriters (Fig-
ure 14-6).

Figure 14-5. Displaying a list of cache attributes in STS

Figure 14-6. Displaying a list of child elements in STS

262 | Chapter 14: GemFire: A Distributed Data Grid

The use-bean-factory-locator attribute (not shown) deserves a men-
tion. The factory bean responsible for creating the cache uses an internal
Spring type called a BeanFactoryLocator to enable user classes declared
in GemFire’s native cache.xml file to be registered as Spring beans. The
BeanFactoryLocator implementation also permits only one bean defini-
tion for a cache with a given id. In certain situations, such as running
JUnit integration tests from within Eclipse, you’ll need to disable the
BeanFactoryLocator by setting this value to false to prevent an excep-
tion. This exception may also arise during JUnit tests running from a
build script. In this case, the test runner should be configured to fork a
new JVM for each test (in Maven, set <forkmode>always</forkmode>).
Generally, there is no harm in setting this value to false.

Region Configuration
As mentioned in the chapter opener, GemFire provides a few types of regions. The XML
namespace defines replicated-region, partitioned-region, local-region, and client-
region elements to create regions. Again, this does not cover all available features but
highlights some of the more common ones. A simple region declaration, as shown in
Example 14-3, is all you need to get started.

Example 14-3. Basic region declaration

<gfe:cache/>
<gfe:replicated-region id="Customer" />

The region has a dependency on the cache. Internally, the cache creates the region. By
convention, the namespace does the wiring implicitly. The default cache declaration
creates a Spring bean named gemfireCache. The default region declaration uses the same
convention. In other words, Example 14-3 is equivalent to:

<gfe:cache id="gemfireCache" />
<gfe:replicated-region id="Customer" cache-ref="gemfireCache" />

If you prefer, you can supply any valid bean name, but be sure to set cache-ref to the
corresponding bean name as required.

Typically, GemFire is deployed as a distributed data grid, hosting replicated or parti-
tioned regions on cache servers. Client applications use client regions to access data.
For development and integration testing, it is a best practice to eliminate any depen-
dencies on an external runtime environment. You can do this by simply declaring a
replicated or local region with an embedded cache, as is done in the sample code. Spring
environment profiles are extremely useful in configuring GemFire for different envi-
ronments.

In Example 14-4, the dev profile is intended for integration testing, and the prod profile
is used for the deployed cache configuration. The cache and region configuration is
transparent to the application code. Also note the use of property placeholders to

Configuring GemFire with the Spring XML Namespace | 263

specify the locator hosts and ports from an external properties file. Cache client con-
figuration is discussed further in “Cache Client Configuration” on page 265.

Example 14-4. Sample XML configuration for development and production

<beans profile="dev">
 <gfe:cache/>
 <gfe:replicated-region id="Customer" />
</beans>

<beans profile="prod">
 <context:properties-placeholder location="client-app.properties" />
 <gfe:client-cache pool-name="pool" />

 <gfe:client-region id="Customer" />

 <gfe:pool id="pool">
 <gfe:locator host="${locator.host.1}" port="${locator.port.1}"/>
 <gfe:locator host="${locator.host.2}" port="${locator.port.2}"/>
 </gfe:pool>
</beans>

Spring provides a few ways to activate the appropriate environment
profile(s). You can set the property spring.profiles.active in a system
property, a servlet context parameter, or via the @ActiveProfiles anno-
tation.

As shown in Figure 14-7, there are a number of common region configuration options
as well as specific options for each type of region. For example, you can configure all
regions to back up data to a local disk store synchronously or asynchronously.

Figure 14-7. Displaying replicated region attributes in STS

Additionally, you may configure regions to synchronize selected entries over a WAN
gateway to distribute data over a wide geographic area. You may also register Cache
Listeners, CacheLoaders, and CacheWriters to handle region events. Each of these in-
terfaces is used to implement a callback that gets invoked accordingly. A CacheLis
tener is a generic event handler invoked whenever an entry is created, updated,

264 | Chapter 14: GemFire: A Distributed Data Grid

destroyed, etc. For example, you can write a simple CacheListener to log cache events,
which is particularly useful in a distributed environment (see Example 14-5). A Cache
Loader is invoked whenever there is a cache miss (i.e., the requested entry does not
exist), allowing you to “read through” to a database or other system resource. A Cache
Writer is invoked whenever an entry is updated or created to provide “write through”
or “write behind” capabilities.

Example 14-5. LoggingCacheListener implementation

public class LoggingCacheListener extends CacheListenerAdapter {

 private static Log log = LogFactory.getLog(LoggingCacheListener.class);

 @Override
 public void afterCreate(EntryEvent event) {
 String regionName = event.getRegion().getName();
 Object key = event.getKey();
 Object newValue = event.getNewValue();
 log.info("In region [" + regionName + "] created key ["
 + key + "] value [" + newValue + "]");
 }

 @Override
 public void afterDestroy(EntryEvent event) {
 …
 }

 @Override
 public void afterUpdate(EntryEvent event) {
 …
 }
}

Other options include expiration, the maximum time a region or an entry is held in the
cache, and eviction, policies that determine which items are removed from the cache
when the defined memory limit or the maximum number of entries is reached. Evicted
entries may optionally be stored in a disk overflow.

You can configure partitioned regions to limit the amount of local memory allocated
to each partition node, define the number of buckets used, and more. You may even
implement your own PartitionResolver to control how data is colocated in partition
nodes.

Cache Client Configuration
In a client server configuration, application processes are cache clients—that is, they
produce and consume data but do not distribute it directly to other processes. Neither
does a cache client implicitly see updates performed by remote processes. As you might
expect by now, this is entirely configurable. Example 14-6 shows a basic client-
side setup using a client-cache, client-region, and a pool. The client-cache is a

Configuring GemFire with the Spring XML Namespace | 265

lightweight implementation optimized for client-side services, such as managing one
or more client regions. The pool represents a connection pool acting as a bridge to the
distributed system and is configured with any number of locators.

Typically, two locators are sufficient: the first locator is primary, and
the remaining ones are strictly for failover. Every distributed system
member should use the same locator configuration. A locator is a sep-
arate process, running in a dedicated JVM, but is not strictly required.
For development and testing, the pool also provides a server child
element to access cache servers directly. This is useful for setting up a
simple client/server environment (e.g., on your local machine) but not
recommended for production systems. As mentioned in the chapter
opener, using a locator requires a full GemFire installation, whereas you
can connect to a server directly just using the APIs provided in the pub-
licly available gemfire.jar for development, which supports up to three
cache members.

Example 14-6. Configuring a cache pool

<gfe:client-cache pool-name="pool" />

<gfe:client-region id="Customer" />

<gfe:pool id="pool">
 <gfe:locator host="${locator.host.1}" port="${locator.port.1}"/>
 <gfe:locator host="${locator.host.2}" port="${locator.port.2}"/>
</gfe:pool>

You can configure the pool to control thread allocation for connections and network
communications. Of note is the subscription-enabled attribute, which you must set to
true to enable synchronizing region entry events originating from remote processes
(Example 14-7).

Example 14-7. Enabling subscriptions on a cache pool

<gfe:client-region id="Customer">
 <gfe:key-interest durable="false" receive-values="true" />
</client-region>

<gfe:pool id="pool" subcription-enabled="true">
 <gfe:locator host="${locator.host.1}" port="${locator.port.1}"/>
 <gfe:locator host="${locator.host.2}" port="${locator.port.2}"/>
</gfe:pool>

With subscriptions enabled, the client-region may register interest in all keys or spe-
cific keys. The subscription may be durable, meaning that the client-region is updated
with any events that may have occurred while the client was offline. Also, it is possible
to improve performance in some cases by suppressing transmission of values unless

266 | Chapter 14: GemFire: A Distributed Data Grid

explicitly retrieved. In this case, new keys are visible, but the value must be retrieved
explicitly with a region.get(key) call, for example.

Cache Server Configuration
Spring also allows you to create and initialize a cache server process simply by declaring
the cache and region(s) along with an additional cache-server element to address
server-side configuration. To start a cache server, simply configure it using the name-
space and start the application context, as shown in Example 14-8.

Example 14-8. Bootstrapping a Spring application context

public static void main(String args[]) {
 new ClassPathXmlApplicationContext("cache-config.xml");
}

Figure 14-8 shows a Spring-configured cache server hosting two partitioned regions
and one replicated region. The cache-server exposes many parameters to tune network
communications, system resources, and the like.

Figure 14-8. Configuring a cache server

WAN Configuration
WAN configuration is required for geographically distributed systems. For example, a
global organization may need to share data across the London, Tokyo, and New York
offices. Each location manages its transactions locally, but remote locations need to be
synchronized. Since WAN communications can be very costly in terms of performance
and reliability, GemFire queues events, processed by a WAN gateway to achieve

Configuring GemFire with the Spring XML Namespace | 267

eventual consistency. It is possible to control which events get synchronized to each
remote location. It is also possible to tune the internal queue sizes, synchronization
scheduling, persistent backup, and more. While a detailed discussion of GemFire’s
WAN gateway architecture is beyond the scope of this book, it is important to note
that WAN synchronization must be enabled at the region level. See Example 14-9 for
a sample configuration.

Example 14-9. GemFire WAN configuration

<gfe:replicated-region id="region-with-gateway" enable-gateway="true" hub-id="gateway-hub" />

<gfe:gateway-hub id="gateway-hub" manual-start="true">
 <gfe:gateway gateway-id="gateway">
 <gfe:gateway-listener>
 <bean class="..."/>
 </gfe:gateway-listener>
 <gfe:gateway-queue maximum-queue-memory="5" batch-size="3" batch-time-interval="10" />
 </gfe:gateway>

 <gfe:gateway gateway-id="gateway2">
 <gfe:gateway-endpoint port="1234" host="host1" endpoint-id="endpoint1" />
 <gfe:gateway-endpoint port="2345" host="host2" endpoint-id="endpoint2" />
 </gfe:gateway>
</gfe:gateway-hub>

This example shows a region enabled for WAN communications using the APIs avail-
able in GemFire 6 versions. The enable-gateway attribute must be set to true (or is
implied by the presence of the hub-id attribute), and the hub-id must reference a gate
way-hub element. Here we see the gateway-hub configured with two gateways. The first
has an optional GatewayListener to handle gateway events and configures the gateway
queue. The second defines two remote gateway endpoints.

The WAN architecture will be revamped in the upcoming GemFire 7.0
release. This will include new features and APIs, and will generally
change the way gateways are configured. Spring Data GemFire is plan-
ning a concurrent release that will support all new features introduced
in GemFire 7.0. The current WAN architecture will be deprecated.

Disk Store Configuration
GemFire allows you to configure disk stores for persistent backup of regions, disk
overflow for evicted cache entries, WAN gateways, and more. Because a disk store may
serve multiple purposes, it is defined as a top-level element in the namespace and
may be referenced by components that use it. Disk writes may be synchronous or
asynchronous.

For asynchronous writes, entries are held in a queue, which is also configurable. Other
options control scheduling (e.g., the maximum time that can elapse before a disk write

268 | Chapter 14: GemFire: A Distributed Data Grid

is performed or the maximum file size in megabytes). In Example 14-10, an overflow
disk store is configured to store evicted entries. For asynchronous writes, it will store
up to 50 entries in a queue, which will be flushed every 10 seconds or if the queue is at
capacity. The region is configured for eviction to occur if the total memory size exceeds
2 GB. A custom ObjectSizer is used to estimate memory allocated per entry.

Example 14-10. Disk store configuration

<gfe:partitioned-region id="partition-data" persistent="true" disk-store-ref="ds2">
 <gfe:eviction type="MEMORY_SIZE" threshold="2048" action="LOCAL_DESTROY">
 <gfe:object-sizer>
 <bean class="org.springframework.data.gemfire.SimpleObjectSizer" />
 </gfe:object-sizer>
 </gfe:eviction>
</gfe:partitioned-region>

<gfe:disk-store id="ds2" queue-size="50" auto-compact="true"
 max-oplog-size="10" time-interval="10000">
 <gfe:disk-dir location="/gemfire/diskstore" />
</gfe:disk-store>

Data Access with GemfireTemplate
Spring Data GemFire provides a template class for data access, similar to the JdbcTem
plate or JmsTemplate. The GemfireTemplate wraps a single region and provides simple
data access and query methods as well as a callback interface to access region opera-
tions. One of the key reasons to use the GemfireTemplate is that it performs exception
translation from GemFire checked exceptions to Spring’s PersistenceException run-
time exception hierarchy. This simplifies exception handling required by the native
Region API and allows the template to work more seamlessly with the Spring declarative
transactions using the GemfireTransactionManager which, like all Spring transaction
managers, performs a rollback for runtime exceptions (but not checked exceptions) by
default. Exception translation is also possible for @Repository components, and trans-
actions will work with @Transactional methods that use the Region interface directly,
but it will require a little more care.

Example 14-11 is a simple demonstration of a data access object wired with the Gem
fireTemplate. Notice the template.query() invocation backing findByLastName(...).
Queries in GemFire use the Object Query Language (OQL). This method requires only
a boolean predicate defining the query criteria. The body of the query, SELECT * from
[region name] WHERE..., is assumed. The template also implements find(...) and findU
nique(...) methods, which accept parameterized query strings and associated param-
eters and hide GemFire’s underlying QueryService API.

Example 14-11. Repository implementation using GemfireTemplate

@Repository
class GemfireCustomerRepository implements CustomerRepository {

Data Access with GemfireTemplate | 269

 private final GemfireTemplate template;

 @Autowired
 public GemfireCustomerRepository(GemfireTemplate template) {
 Assert.notNull(template);
 this.template = template;
 }

 /**
 * Returns all objects in the region. Not advisable for very large datasets.
 */
 public List<Customer> findAll() {
 return new ArrayList<Customer>((Collection<? extends Customer>) ↪
template.getRegion().values());
 }

 public Customer save(Customer customer) {
 template.put(customer.getId(), customer);
 return customer;
 }

 public List<Customer> findByLastname(String lastname) {

 String queryString = "lastname = '" + lastname + "'";
 SelectResults<Customer> results = template.query(queryString);
 return results.asList();
 }

 public Customer findByEmailAddress(EmailAddress emailAddress) {

 String queryString = "emailAddress = ?1";
 return template.findUnique(queryString, emailAddress);
 }

 public void delete(Customer customer) {
 template.remove(customer.getId());
 }
}

We can configure the GemfireTemplate as a normal Spring bean, as shown in Exam-
ple 14-12.

Example 14-12. GemfireTemplate configuration

<bean id="template" class="org.springframework.data.gemfire.GemfireTemplate">
 <property name="region" ref="Customer" />
</bean>

270 | Chapter 14: GemFire: A Distributed Data Grid

Repository Usage
The 1.2.0 release of Spring Data GemFire introduces basic support for Spring Data
repositories backed by GemFire. All the core repository features described in Chap-
ter 2 are supported, with the exception of paging and sorting. The sample code dem-
onstrates these features.

POJO Mapping
Since GemFire regions require a unique key for each object, the top-level domain ob-
jects—Customer, Order, and Product—all inherit from AbstractPersistentEntity,
which defines an id property (Example 14-13).

Example 14-13. AbstractPersistentEntity domain class

import org.springframework.data.annotation.Id;

public class AbstractPersistentEntity {

 @Id
 private final Long id;
}

Each domain object is annotated with @Region. By convention, the region name is the
same as the simple class name; however, we can override this by setting the annotation
value to the desired region name. This must correspond to the region name—that is,
the value of id attribute or the name attribute, if provided, of the region element. Com-
mon attributes, such as @PersistenceConstructor (shown in Example 14-14) and @Tran
sient, work as expected.

Example 14-14. Product domain class

@Region
public class Product extends AbstractPersistentEntity {

 private String name, description;
 private BigDecimal price;
 private Map<String, String> attributes = new HashMap<String, String>();

 @PersistenceConstructor
 public Product(Long id, String name, BigDecimal price, String description) {

 super(id);
 Assert.hasText(name, "Name must not be null or empty!");
 Assert.isTrue(BigDecimal.ZERO.compareTo(price) < 0, "Price must be greater than zero!");

 this.name = name;
 this.price = price;
 this.description = description;
}

Repository Usage | 271

Creating a Repository
GemFire repositories support basic CRUD and query operations, which we define using
Spring Data’s common method name query mapping mechanism. In addition, we can
configure a repository method to execute any OQL query using @Query, as shown in
Example 14-15.

Example 14-15. ProductRepository interface

public interface ProductRepository extends CrudRepository<Product, Long> {

 List<Product> findByDescriptionContaining(String description);

 /**
 * Returns all {@link Product}s having the given attribute value.
 * @param attribute
 * @param value
 * @return
 */
 @Query("SELECT * FROM /Product where attributes[$1] = $2")
 List<Product> findByAttributes(String key, String value);

 List<Product> findByName(String name);
}

You can enable repository discovery using a dedicated gfe-data namespace, which is
separate from the core gfe namespace. Alternatively, if you’re using Java configuration,
simply annotate your configuration class with @EnableGemfireRepositories, as shown
in Example 14-16.

Example 14-16. Enabling GemFire repositories using XML

<gfe-data:repositories base-package="com.oreilly.springdata.gemfire" />

PDX Serialization
PDX is GemFire’s proprietary serialization library. It is highly efficient, configurable,
interoperable with GemFire client applications written in C# or C++, and supports
object versioning. In general, objects must be serialized for operations requiring net-
work transport and disk persistence. Cache entries, if already serialized, are stored in
serialized form. This is generally true with a distributed topology. A standalone cache
with no persistent backup generally does not perform serialization.

If PDX is not enabled, Java serialization will be used. In this case, your domain classes
and all nontransient properties must implement java.io.Serializable. This is not a
requirement for PDX. Additionally, PDX is highly configurable and may be customized
to optimize or enhance serialization to satisfy your application requirements.

Example 14-17 shows how to set up a GemFire repository to use PDX.

272 | Chapter 14: GemFire: A Distributed Data Grid

Example 14-17. Configuring a MappingPdxSerializer

<gfe:cache pdx-serializer="mapping-pdx-serializer" />

<bean id="mapping-pdx-serializer"
 class="org.springframework.data.gemfire.mapping.MappingPdxSerializer" />

The MappingPdxSerializer is automatically wired with the default mapping context
used by the repositories. One limitation to note is that each cache instance can have
only one PDX serializer, so if you’re using PDX for repositories, it is advisable to set up
a dedicated cache node (i.e., don’t use the same process to host nonrepository regions).

Continuous Query Support
A very powerful feature of GemFire is its support for continuous queries (CQ), which
provides a query-driven event notification capability. In traditional distributed appli-
cations, data consumers that depend on updates made by other processes in near-real
time have to implement some type of polling scheme. This is not particularly efficient
or scalable. Alternatively, using a publish-subscribe messaging system, the application,
upon receiving an event, typically has to access related data stored in a disk-based data
store. Continuous queries provide an extremely efficient alternative. Using CQ, the
client application registers a query that is executed periodically on cache servers. The
client also provides a callback that gets invoked whenever a region event affects the
state of the query’s result set. Note that CQ requires a client/server configuration.

Spring Data GemFire provides a ContinuousQueryListenerContainer, which supports a
programming model based on Spring’s DefaultMessageListenerContainer for JMS-
message-driven POJOs. To configure CQ, create a CQLC using the namespace, and
register a listener for each continuous query (Example 14-18). Notice that the pool
must have subscription-enabled set to true, as CQ uses GemFire’s subscription
mechanism.

Example 14-18. Configuring a ContinuousQueryListenerContainer

<gfe:client-cache pool-name="client-pool" />

<gfe:pool id="client-pool" subscription-enabled="true">
 <gfe:server host="localhost" port="40404" />
</gfe:pool>

<gfe:client-region id="Person" pool-name="client-pool" />

<gfe:cq-listener-container>
 <gfe:listener ref="cqListener" query="select * from /Person" />
</gfe:cq-listener-container>

<bean id="cqListener" class="org.springframework.data.gemfire.examples.CQListener" />

Now, implement the listener as shown in Example 14-19.

Continuous Query Support | 273

Example 14-19. Continuous query listener implementation

public class CQListener {

 private static Log log = LogFactory.getLog(CQListener.class);

 public void handleEvent(CqEvent event) {
 log.info("Received event " + event);
 }
}

The handleEvent() method will be invoked whenever any process makes a change in
the range of the query. Notice that CQListener does not need to implement any interface,
nor is there anything special about the method name. The continuous query container
is smart enough to automatically invoke a method that has a single CqEvent parameter.
If there is more than one, declare the method name in the listener configuration.

274 | Chapter 14: GemFire: A Distributed Data Grid

Bibliography

[ChoDir10] Chodorow, Kristina, and Michael Dirolf. MongoDB: The Definitive
Guide, O’Reilly Media, 2010. http://shop.oreilly.com/product/0636920001096.do

[CoTeGreBa11] Cogoluegnes, Arnaud, Thierry Templier, Gary Gregory, and Olivier
Bazoud. Spring Batch in Action, Manning Publications Co., 2011. http://www.man
ning.com/templier

[Evans03] Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of
Software, Addison-Wesley, 2003.

[Fielding00] Fielding, Roy. Architectural Styles and the Design of Network-Based Soft-
ware Architectures, University of California, 2000. http://www.ics.uci.edu/~fielding/
pubs/dissertation/top.htm

[Fisher12] Fisher, Mark. Spring Integration in Action, Manning Publications Co., 2012.
http://www.manning.com/fisher

[Hunger12] Hunger, Michael. Good Relationships: The Spring Data Neo4j Guide
Book, InfoQ, 2012. http://www.infoq.com/minibooks/good-relationships-spring-data

[Konda12] Konda, Madhusudhan. Just Spring Data Access, O’Reilly Media, 2012. http:
//shop.oreilly.com/product/0636920025405.do

[LongMay11] Long, Josh, and Steve Mayzak. Getting Started with Roo, O’Reilly Me-
dia, 2011. http://shop.oreilly.com/product/0636920020981.do

[Minella11] Minella, Michael T.. Pro Spring Batch, Apress Media LLC, 2011. http://
www.apress.com/9781430234524

[RimPen12] Rimple, Ken, and Srini Penchikala. Spring Roo in Action, Manning Publi-
cations Co., 2012. http://www.manning.com/rimple

[WePaRo10] Webber, Jim, Savas Parastatidis, and Ian Robinson. REST in Practice,
O’Reilly Media, 2010. http://shop.oreilly.com/product/9780596805838.do

275

http://shop.oreilly.com/product/0636920001096.do
http://www.manning.com/templier
http://www.manning.com/templier
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.manning.com/fisher
http://www.infoq.com/minibooks/good-relationships-spring-data
http://shop.oreilly.com/product/0636920025405.do
http://shop.oreilly.com/product/0636920025405.do
http://shop.oreilly.com/product/0636920020981.do
http://www.apress.com/9781430234524
http://www.apress.com/9781430234524
http://www.manning.com/rimple
http://shop.oreilly.com/product/9780596805838.do

Index

A
AbstractDocument class, 83
AbstractEntity class

equals method, 38, 106
hashCode method, 38, 106

AbstractIntegrationTest class, 48
AbstractMongoConfiguration class, 81, 82
AbstractPersistentEntity class, 271
@ActiveProfile annotation, 42
@ActiveProfiles annotation, 264
aggregate root, 40
Amazon Elastic Map Reduce, 176
analyzing data (see data analysis)
Annotation Processing Toolkit (APT)

about, 30
supported annotation processors, 31, 99

AnnotationConfigApplicationContext class,
46

AnnotationConfigWebApplicationContext
class, 160

annotations (see specific annotations)
Apache Hadoop project (see Hadoop; Spring

for Apache Hadoop)
Appassembler plug-in, 182
application-context.xml file, 95
ApplicationConfig class, 46, 47, 95, 160
ApplicationContext interface

cache declaration, 261
caching interceptor and, 137
derived finder methods and, 118
launching MapReduce jobs, 184
mongoDBFactory bean, 90
registering converters in, 108
REST repository exporter and, 160

ApplicationConversionServiceFactoryBean.jav
a, 150

APT (Annotation Processing Toolkit)
about, 30
supported annotation processors, 31, 99

AspectJ extension (Java)
Spring Data Neo4j and, 105, 123
Spring Roo and, 141, 149

@Async annotation, 209
Atom Syndication Format RFC, 161
atomic counters, 134
AtomicInteger class, 134
AtomicLong class, 134
Autosys job scheduler, 191
@Autowired annotation, 65
awk command, 177, 204

B
BASE acronym, xvii
bash shell, 205
BasicDBObject class, 80, 89
BeanFactoryLocator interface, 262
BeanPropertyItemSqlParameterSourceProvider

class, 248
BeanPropertyRowMapper class, 57, 70
BeanWrapperFieldExtractor class, 237
Bergh-Johnsson, Dan, 84
Big Data

about, xvi
analyzing data with Hadoop, 195–217
integrating Hadoop with Spring Batch and

Spring Integration, 219–250
Spring for Apache Hadoop, 175–193

BigInteger class, 83
BigTable technology (Google), 214

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

277

BooleanExpression class, 57
BoundHashOperations interface, 130
BoundListOperations interface, 130
BoundSetOperations interface, 130
BoundValueOperations interface, 130
BoundZSetOperations interface, 130
BSON (binary JSON), 77
build system

generating query metamodel, 30
generating query types, 58

C
@Cacheable annotation, 136
CacheListener interface, 258, 264
CacheLoader interface, 258, 264
caches

about, 257
configuring for GemFire, 258–262
Redis and, 136
regions and, 257

CacheWriter interface, 258, 264
ClassLoader class, 134
collaborative filtering, 121
Collection interface, 116
CollectionCallback interface, 95
@Column annotation, 38, 40
command line, Spring Roo, 143
CommandLineJobRunner class, 242
@ComponentScan annotation, 45
@CompoundIndex annotation, 91
@Configuration annotation, 45, 137
Configuration class, 180, 183, 197
<configuration /> element, 184
CONNECT verb (HTTP), 157
ConnectionFactory interface, 129
Content-Type header (HTTP), 163, 171
<context:component-scan /> element, 198
@ComponentScan annotation, 47
ContextLoaderListener class, 160
ContinuousQueryListenerContainer class, 273
Control-M job scheduler, 191
copyFromLocal command, 178
counter, atomic, 134
CqEvent interface, 274
CQListener interface, 274
cron utility, 191
CronTrigger class, 191
CRUD operations

about, 13

exposing, 19, 48
REST repository exporter and, 157
Spring Data Neo4j support, 113
transactions and, 50

CrudRepository interface
about, 19
delete... methods, 19
executing predicates, 33
extending, 97
findAll method, 19
findOne method, 48
REST repository exporter and, 160
save method, 19, 48

curl command, 161, 231
Cypher query language

derived and annotated finder methods, 116–
119

Neo4j support, 103
query components, 114

D
DAO (Data Access Exception) exception

hierarchy, 209
data access layers

CRUD operations, 13
defining query methods, 16–18
defining repositories, 18–22
IDE integration, 22–24
implementing, 13–15
Spring Roo and, 143

data analysis
about, 195
using HBase, 214–217
using Hive, 195–204
using Pig, 204–213

data cleansing, 176
data grids (see Spring Data GemFire)
data stores

graph databases as, 101
querying using Querydsl, 32

DataAccessException class, 37, 43, 65, 94
database schemas, 59, 101
DataSource interface, 201, 235
DB class, 80, 95
<db-factory /> element, 82
DbCallback class, 95
DBCollection class, 80, 95
DBObject interface

creating MongoDB document, 80

278 | Index

custom conversion, 95
customizing conversion, 91
mapping subsystem and, 83

@DBRef annotation, 88, 89
Declarable interface, 258
DefaultMessageListenerContainer class, 273
Delete class, 215
DELETE verb (HTTP), 157, 160, 171
deleting objects, 73
Dev HTTP Client for Google Chrome plug-in,

160
Dialect class (Hibernate), 57
DirectChannel class, 212
disk stores configuration, 268
DistCp class, 189
@Document annotation

APT processors and, 31
mapping subsystem example, 85, 88, 91

DocumentCallbackHandler interface, 95
Domain Driven Design (Evans), 39
domain model (Spring Data project), 6
Driver interface, 201
DUMP operation, 206
DuplicateKeyException class, 91
DynamicProperties interface, 108

E
EclipseLink project, 37
Eifrem, Emil, 3, 105
Elastic Map Reduce (Amazon), 176
@ElementCollection annotation, 49
@Embeddable annotation, 31, 39, 150
EmbeddedDatabaseBuilder class, 54
@EmbeddedOnly annotation, 31
@EnableGemfireRepositories annotation, 272
@EnableJpaRepositories annotation, 47
@EnableMongoRepositories annotation, 96
@EnableTransactionManagement annotation,

45, 47
@Enable…Repositories annotation, 14
Enterprise Integration Patterns, 220
@Entity annotation, 28, 31, 38
entity lifecycle

about, 122
creating entities, 148–150, 153

EntityManager interface
JPA repositories and, 37, 43
querying relational stores, 32

EntityManagerFactory interface, 37, 44, 45

ENV environment variable, 186
Evans, Eric, 39
event forwarding, 229
event streams, 226–229
ExampleDriver class, 179, 184
executing queries (see query execution)
ExecutorChannel class, 212
ExitStatus codes, 240
exporting data from HDFS, 243–250
Expression interface, 57

F
Facebook networking site, 195
@Fetch annotation

about, 110
advanced mapping mode and, 124
fetch strategies and, 123

@Field annotation, 85, 86
Fielding, Roy, 157
FileSystem class, 187, 236
filtering, collaborative, 121
finder methods

annotated, 116
derived, 117–119
result handling, 116

FlatFileItemReader class, 233, 244, 245
FlatFileParseException class, 245
FsShell class, 187, 222
FsShellWritingMessageHandler class, 223

G
GemFire data grid, 255–257
GemfireTemplate class, 269
GemfireTransactionManager class, 269
Get class, 215
GET commands (Redis), 129
get product-counts command, 132
GET verb (HTTP), 157
getmerge command, 178
Getting Started with Roo (Long and Mayzak),

141
gfe namespace, 259
gfe-data namespace, 259
Google BigTable technology, 214
Google File System, 175
graph databases, 101

(see also Neo4j graph database)
GraphDatabaseService interface, 111, 112

Index | 279

@GraphId annotation, 106, 122
@GraphProperty annotation, 108
GraphRepository interface, 106, 113
GROUP operation, 206
Grunt console (Pig), 204, 206

H
Hadoop

about, 175
additional resources, 177
analyzing data with, 195–217
challenges developing with, 176
collecting and loading data into HDFS, 219–

237
exporting data from HDFS, 243–250
Spring Batch support, 238–240
wordcount application, 175, 177–183, 240–

242
workflow considerations, 238–243

hadoop command, 178
Hadoop command-line, 183
Hadoop Distributed File System (see HDFS)
Hadoop MapReduce API

about, 175
data analysis and, 195
Hive and, 195
Pig and, 204
Spring Batch and, 240–242
wordcount application and, 175, 177–183

HAProxy load balancer, 197
HashOperations interface, 130, 133
HATEOAS acronym, 158
HBase database

about, 195, 214
installing, 214
Java client, 215–217

hbase shell command, 214
HBaseConfiguration class, 216
HBaseTemplate class, 216
HDFS (Hadoop Distributed File System)

about, 175
challenges developing with, 176
collecting and loading data into, 219–237
combining scripting and job submission,

190
event forwarding and, 229
event streams and, 226–229
exporting data from, 243–250
file storage and, 177

Hive project and, 195
loading data from relational databases, 234–

237
loading log files into, 222–226
Pig project and, 206
scripting on JVM, 187–190
Spring Batch and, 234, 240–242
Spring Integration and, 222

HDFS shell, 177, 182
HdfsResourceLoader class, 244
HdfsTextItemWriter class, 234, 236
HdfsWritingMessageHandler class, 228
HEAD verb (HTTP), 157
Hibernate project, 37, 57
HibernateAnnotationProcessor class, 31
Hive project

about, 195
analyzing password file, 196
Apache log file analysis, 202–204
JDBC client, 201
running Hive servers, 197
Thrift client, 198–200
workflow considerations, 242

Hive servers, 197
<hive-server /> element, 197
HiveClient class, 199
HiveDriver class, 201
HiveQL language, 195, 196
HiveRunner class, 201, 203
HiveServer class, 197
HiveTemplate class, 199, 202
HKEYS command, 133
Homebrew package manager, 127
href (hypertext reference) attribute, 161
hsqldb directory, 54
HSQLDB relational database, 148
HSQLDBTemplates class, 57
HTable class, 215
HTTP protocol, 157
hypermedia, 158
HyperSQL relational database, 54

I
@Id annotation, 83
identifiers, resources and, 157
IncorrectResultSizeDataAccessException class,

48
@Index annotation, 91
@Indexed annotation, 105, 107

280 | Index

indexes
MongoDB support, 91
Neo4j support, 102
Spring Data Neo4j support, 113, 120

IndexRepository interface
findAllByPropertyValue method, 115
findAllByQuery method, 115
findAllByRange method, 115

InputStream class, 201, 244
insert operations

inserting data into MongoDB, 79
inserting objects in JDBC, 71

IntelliJ IDEA, 9, 24, 143
Inter Type Declarations (ITDs), 141, 142
IntSumReducer class, 180
IntWritable class, 184
ITDs (Inter Type Declarations), 141, 142
ItemProcessor interface, 233, 247
ItemReader interface, 233
ItemWriter interface, 233, 247, 249
Iterable interface, 116

J
JacksonJsonRedisSerializer class, 134
Java client (HBase), 215–217
Java language

AspectJ extension, 105, 123, 141
MongoDB support, 80
Neo4j support, 103
Spring Roo tool, 141–154

Java Persistence API (JPA)
about, 4, 37
repositories and, 37–52
Spring Roo example, 147–152

Java Transaction Architecture (JTA), 102
javax.persistence package, 31
javax.sql package, 57
JDBC

about, 53
Cypher query language and, 115
exporting data from HDFS, 243–248
Hive project and, 197
insert, update, delete operations, 71–73
query execution and, 64–71
QueryDslJdbcTemplate class, 63–64
sample project and setup, 54–62

JDBC client (Hive), 201
<jdbc:embedded-database> element, 54
JdbcBatchItemWriter class, 247, 249

JdbcCursorItemReader class, 235
JdbcItemReader class, 234
JdbcItemWriter class, 233
JdbcPagingItemReader class, 236
JdbcTemplate class, 196

about, 201
GemfireTemplate and, 269
Querydsl and, 53, 63

JDK Timer, 191
JdkSerializationRedisSerializer class, 136
JDOAnnotationProcessor class, 31
Jedis driver, 129
JedisConnectionFactory class, 129
Jetty plug-in, 158
JmsTemplate class, 269
Job class (MapReduce), 180, 184
Job interface (Spring Batch), 232
job scheduling, 191–193
JobDetail class, 193
JobDetail interface, 193
JobLauncher interface, 232
JobRepository interface, 232
JobRunner class, 184, 191
Johnson, Rod, 3, 105
@JoinColumn annotation, 40
JPA (Java Persistence API)

about, 4, 37
repositories and, 37–52
Spring Roo example, 147–152

JPA module (Querydsl)
bootstrapping sample code, 44–46
querying relational stores, 32
repository usage, 37, 47–52
sample project, 37–42
traditional repository approach, 42–44

JPAAnnotationProcessor class, 31, 51
JPAQuery class, 32
JpaTransactionManager class, 46
JSON format, 79
@JsonIgnore annotation, 167
@JsonSerialize annotation, 166
JTA (Java Transaction Architecture), 102
JtaTransactionManager class, 115, 122
Just Spring Data Access (Konda), 53

K
key/value data (see Spring Data Redis project)
Konda, Madhusudhan, 53

Index | 281

L
LIKE operator, 49
LineAggregator interface, 237
List interface, 116
ListOperations interface, 130
log files

analyzing using Hive, 202–204
analyzing using Pig, 212–213
loading into HDFS, 222–226

Long, Josh, 141
ls command, 178, 187
Lucene search engine library, 102, 108

M
m2eclipse plug-in, 7
@ManyToOne annotation, 41, 171
Map interface, 87, 133, 257
@MappedSuperclass annotation, 38
Mapper class, 180, 184
mapping subsystem (MongoDB)

about, 83
customizing conversion, 91–93
domain model, 83–89
index support, 91
setting up infrastructure, 89–91

MappingContext interface, 89, 91, 93
MappingMongoConverter class, 89, 90, 93
MappingPdxSerializer class, 272
MappingProjection class, 57, 64
MapReduce API (see Hadoop MapReduce API)
MATCH identifier (Cypher), 114
Maven projects

Appassembler plug-in, 182
installing and executing, 6
IntelliJ IDEA and, 9
Jetty plug-in, 158
m2eclipse plug-in and, 7
maven-apt-plugin, 30, 51
Querydsl integration, 30, 58
querydsl-maven-plugin, 58
Spring Roo and, 145

maven-apt-plugin, 30, 51
Mayzak, Steve, 141
media types, 157
MessageHandler interface, 212
MessageListener interface, 135
MessageListenerAdapter class, 135

messages, listening and responding to, 135–
136

MessageStore interface, 229
META-INF directory, 16, 179
MethodInvokingJobDetailFactoryBean class,

193
Mongo class, 80
<mongo:mapping-converter /> element, 90,

93
MongoAnnotationProcessor class, 31, 99
MongoConverter interface, 93
MongoDB

about, 77
accessing from Java programs, 80
additional information, 80
downloading, 78
exporting data from HDFS, 249–250
inserting data into, 79
mapping subsystem, 83–93
querying with, 32
repository example, 96–100
setting up, 78
setting up infrastructure, 81–82
using shell, 79

MongoDB shell, 79
MongoDbFactory interface, 82, 94
MongoItemWriter class, 249
MongoMappingContext class, 89, 90
MongoOperations interface, 249

about, 94
delete method, 95
findAll method, 95
findOne method, 95
geoNear method, 95
mapReduce method, 95
save method, 95
updateFirst method, 95
updateMulti method, 95
upsert method, 95

MongoTemplate class, 82, 94–96, 249
MultiResourceItemReader class, 245

N
Neo Technology (company), 104
Neo4j graph database, 102–104, 102

(see also Spring Data Neo4j project)
Neo4j Server

about, 103
usage considerations, 124

282 | Index

web interface, 103
<neo4j:config /> element, 112, 122
Neo4jTemplate class

about, 105, 112
delete method, 115
fetch method, 113
findAll method, 115
findOne method, 106, 113, 115
getNode method, 113
getOrCreateNode method, 107, 113
getRelationshipsBetween method, 113
load method, 113
lookup method, 107, 108
projectTo method, 113
query method, 109, 113
save method, 109, 113, 115
traverse method, 113

@NodeEntity annotation, 105, 106
Noll, Michael, 177
NonTransientDataAccessException class, 201
@NoRepositoryBean annotation, 21
NoSQL data stores

about, xvii
HDFS and, 176
MongoDB, 77–100
Neo4j graph database, 101–126
Redis key/value store, 127–137
Spring Data project and, 3–4

O
object conversion, 130–132
object mapping, 132–134
Object Query Language (OQL), 269
Object-Graph-Mapping, 105, 106–111
ObjectID class, 83
objects

deleting, 73
inserting, 71
persistent domain, 111–113
updating, 72
value, 39, 83

ObjectSizer interface, 269
@OneToMany annotation, 40
OneToManyResultSetExtractor class, 67–68
OpenJpa project, 37
OPTIONS verb (HTTP), 157
OQL (Object Query Language), 269
ORDER BY identifier (Cypher), 115
OxmSerializer class, 134

P
Page interface, 116
Pageable interface, 18, 49, 98
PageRequest class, 49, 98
PagingAndSortingRepository interface

about, 19
JPA repositories and, 50
MongoDB repositories and, 99
REST repository exporter and, 168, 170

@Parameter annotation, 116
PARAMETERS identifier (Cypher), 115
Parastatidis, Savas, 158
PartitionResolver interface, 265
PassThroughFieldExtractor class, 236
PDX serialization library (Gemfire), 255, 262,

272
Penchikala, Srini, 141
persistence layers (Spring Roo)

about, 143
setting up JPA persistence, 148
setting up MongoDB persistence, 153

persistence.xml file, 45
@PersistenceCapable annotation, 31
@PersistenceConstructor annotation, 271
@PersistenceContext annotation, 43
PersistenceException class, 269
@PersistenceUnit annotation, 45
Pig Latin language, 204, 206
Pig project

about, 195, 204
analyzing password file, 205–207
Apache log file analysis, 212–213
calling scripts inside data pipelines, 211
controlling runtime script execution, 209–

211
installing, 205
running Pig servers, 207–209
workflow considerations, 243

Pig servers, 207–209
Piggybank project, 213
PigRunner class, 208
PigServer class, 204, 207–209, 210
PigStorage function, 206
PigTemplate class, 209, 210
PIG_CLASSPATH environment variable, 205
POST verb (HTTP), 157, 160
Predicate interface, 52, 57
@Profile annotation, 95
ProgramDriver class, 179, 181

Index | 283

Project Gutenberg, 177
Properties class, 261
properties file, 16
property expressions, 17
publish-subscribe functionality (Redis), 135–

136
push-in refactoring, 143
Put class, 215
PUT verb (HTTP), 157, 160, 163

Q
QBean class, 57, 64
qualifiers (HBase), 215
Quartz job scheduler, 191, 192
@Query annotation

about, 16
annotated finder methods and, 116
manually defining queries, 49
repository support, 114
Spring Data Neo4j support, 105

Query class, 95, 97
query execution

extracting list of objects, 68
OneToManyResultSetExtractor class, 67–

68
querying for list of objects, 71
querying for single object, 65–66
repository implementation and, 64
RowMapper interface, 69–70
Spring Data GemFire support, 273

query metamodel
about, 27–30
generating, 30–32, 51–52

query methods
executing, 15
pagination and sorting, 17
property expressions, 17
query derivation mechanism, 16–17
query lookup strategies, 16

query types, generating, 54–57
Querydsl framework

about, 27–30
build system integration, 58
database schema, 59
domain implementation of sample project,

60–62
executing queries, 64–71
generating query metamodel, 30–32, 51–

52

integrating with repositories, 32–34, 51–52
JPA module, 32, 37–52
MongoDB module, 99
reference documentation, 58
SQL module, 54–57
SQLDeleteClause class, 73
SQLInsertClause class, 71
SQLUpdateClause class, 72

querydsl-maven-plugin, 58
QuerydslAnnotationProcessor class, 31
QueryDslJdbcTemplate class

about, 63–64
delete method, 73
executing queries, 64, 66, 69
insert method, 71
insertWithKey method, 71
update method, 72

QueryDslPredicateExecutor interface, 33, 52,
100

@QueryEmbeddable annotation, 30, 31
@QueryEntity annotation, 28, 30, 31
QueryService interface, 269

R
rapid application development

REST repository exporter, 157–171
Spring Roo project, 141–154

Redis key/value store
about, 127
atomic counters, 134
cache abstraction, 136
connecting to, 129
object conversion, 130–132
object mapping, 132–134
publish/subscribe functionality, 135–136
reference documentation, 129
setting up, 127–128
using shell, 128

Redis shell, 128
RedisAtomicLong class, 134
RedisCacheManager class, 136
RedisOperations interface, 132
RedisSerializer interface, 131, 132, 135
RedisTemplate class

about, 130
opsForHash method, 133
RedisCacheManager class and, 136

Reducer class, 180, 184
refactoring, push-in, 143

284 | Index

Region interface, 257, 269
regions

caches and, 257
configuring, 263–265
Gemfire-supported, 257

rel (relation type) attribute, 161
@RelatedTo annotation, 105, 107, 110, 123
@RelatedToVia annotation, 110, 123
relational databases

deleting objects, 73
HSQLDB, 148
HyperSQL, 54
inserting data, 71
JDBC programming, 53–73
JPA repositories, 37–52, 147–152
loading data to HDFS, 234–237
problem of scale, xv
problems with data stores, xvi
updating objects, 72

@RelationshipEntity annotation, 105, 109,
110

repositories, 18
(see also REST repository exporter)
basic graph operations, 115
creating, 272
defining, 18–19, 150, 154
defining query methods, 16–18
derived and annotated finder methods, 116–

119
fine-tuning interfaces, 20
IDE integration, 22–24
integrating Querydsl with, 32–34, 51–52
integrating with Spring Data Neo4j, 113–

119
JPA implementation, 37–52, 147–152
manually implementing methods, 21–22,

34
MongoDB implementation, 96–100, 152–

154
query execution and, 64
quick start, 13–15
Spring Data GemFire and, 271–273
Spring Roo examples, 147–154
traditional approach, 42–44

<repositories /> element, 14
@Repository annotation

data access and, 269
enabling exception translations, 43
Hive Thrift client and, 198

making components discoverable, 45, 65,
95

Repository interface
about, 14, 19
executing predicates, 33

@RepositoryDefinition annotation, 20
Representational State Transfer (REST), 157
representations, defined, 157
resources and identifiers, 157
REST (Representational State Transfer), 157
REST repository exporter

about, 157
sample project, 158–171

REST web services, 158
@RestResource annotation, 161, 164
@ResultColumn annotation, 117
ResultConverter interface, 117
ResultScanner interface, 216
ResultSet interface, 201, 235
ResultSetExtractor interface, 64, 68
ResultsExtractor interface, 216
RETURN identifier (Cypher), 115
RFC 4287, 161
Riak database, 127
Rimple, Ken, 141
rmr command, 182
Robinson, Ian, 158
Roo Shell

about, 146
creating directories, 153

Roo shell
creating directories, 148

roo-spring-data-jpa directory, 148
roo-spring-data-mongo directory, 153
@RooJavaBean annotation, 141, 142, 149
@RooJpaEntity annotation, 149
@RooToString annotation, 149
RowMapper interface, 64

HBase and, 216
implementation examples, 69–70
MappingProject class and, 57

S
sample project

bootstrapping sample code, 44–46
JDBC programming, 54–62
JPA repositories, 37–42
mapping subsystem, 83–93
REST expository exporter, 158–171

Index | 285

Scan class, 215
scheduling jobs, 191–193
<script /> element, 188, 189
sed command, 177, 204
Serializable interface, 137, 272
@Service annotation, 45
ServletContext interface, 160
SET commands (Redis), 129
Set interface, 116
SetOperations interface, 130
show dbs command, 79
SimpleDriverDataSource class, 201
SimpleJdbcTestUtils class, 202
SimpleJpaRepository class, 47, 48, 50
SimpleMongoDbFactory class, 82
SimpleMongoRepository class, 97
SKIP LIMIT identifier (Cypher), 115
SkipListenerSupport class, 245
Sort class, 18
SpEL (Spring Expression Language), 189, 230,

241
Splunk, 250–252

product website, 250
sample application, 251

Spring Batch project
about, 176, 219, 232–234
additional information, 232
Hadoop support, 238–240
Hive and, 242
Pig and, 205, 243
processing and loading data from databases,

234–237
wordcount application and, 240–242

Spring Data GemFire
about, 255
cache client configuration, 265
cache configuration, 258–262
cache server configuration, 267
configuration considerations, 258
continuous query support, 273
data access with, 269
disk store configuration, 268
region configuration, 263–265
repository usage, 271–273
WAN configuration, 267–268

Spring Data JDBC Extensions sub-project, 67
Spring Data JDBC Extensions subproject, 53
Spring Data Neo4j project

about, 105

additional information, 126
advanced graph use cases, 119–122
advanced mapping mode, 123–124
combining graph and repository power,

113–119
entity lifecycle, 122
fetch strategies, 122
Java-REST-binding, 105
modeling domain as graph, 106–111
Neo4j server and, 124
persistent domain objects, 111–113
transactions and, 122

Spring Data project
about, 3
domain model, 6
general themes, 5
NoSQL data stores and, 3–4
Querydsl integration, 27–34
repository abstraction, 13–24, 37–52
sample code, 6–11

Spring Data Redis project
atomic counters, 134
caching functionality, 136
connecting to Redis, 129
object conversion, 130–132
object mapping, 132–134
publish/subscribe functionality, 135–136

Spring Data REST repository exporter project
(see REST repository exporter)

Spring Expression Language (SpEL), 189, 230,
241

Spring for Apache Hadoop
about, 176
combining HDFS scripting and job

submission, 190
configuring and running Hadoop jobs, 183–

187
embedding PigServer, 205
goal for, 219
Hive and, 196
job scheduling, 191–193
Pig and, 207
scripting features, 175
scripting HDFS on the JVM, 187–190
Spring Integration and, 222

Spring Integration project
about, 176, 219, 220–222
additional information, 222
calling Pig scripts inside data pipelines, 211

286 | Index

copying log files, 222–226
event forwarding and, 229
event streams and, 226–229
key building blocks, 220
management functionality, 221, 230–231
Pig and, 205
processing pipeline example, 221

Spring MVC Controller, 185
Spring Roo in Action (Rimple and Penchikala),

141
Spring Roo project

about, 141–143
additional information, 141
downloading, 143
JPA repository example, 147–152
MongoDB repository example, 152–154
persistence layers, 143
quick start, 143

Spring Tool Suite (see STS)
spring-jdbc module, 53, 54
SpringRestGraphDatabase class, 125
SQL module (Querydsl), 54–57
SqlDeleteCallback interface, 73
SQLDeleteClause class, 73
SQLInsertClause class, 71
SqlInsertWithKeyCallback interface, 72
SQLQueryImpl class, 57
SqlUpdateCallback interface, 72
SQLUpdateClause class, 72
START identifier (Cypher), 114
Step interface, 232, 238
String class

accessing data via, 27
converting binary values, 83
Map interface and, 87
Spring Data Redis and, 130

StringRedisTemplate class, 130
STS (Spring Tool Suite)

creating Spring Batch jobs, 238
m2eclipse plug-in and, 7
MongoDB repository example, 153
repository abstraction integration, 22–24
Spring Roo JPA repository example, 147
Spring Roo support, 145

syslog file, 226

T
TableCallback interface, 216
TaskExecutor interface, 212

Tasklet interface, 238, 243
TaskScheduler interface, 191–192
10gen (company), 80
Text class, 184
ThreadPoolTaskScheduler class, 191
Thrift client (Hive), 198–200
TokenizerMapper class, 180
TRACE verb (HTTP), 157
transaction managers, 122
@Transactional annotation

annotating methods, 45
CRUD operations and, 50
data access and, 269
defining transactional scopes, 122
setting flags, 43, 65
wrapping method calls, 65

TransactionLister interface, 262
transactions

activating, 45
CRUD operations and, 50
read-only methods and, 65
Spring Data Neo4j and, 122
verifying execution of, 43
wrapping method calls, 65

TransactionWriter interface, 262
@Transient annotation, 271
TransientDataAccessException class, 201
TraversalRepository interface, 116
traversals

graph databases, 101
Neo4j support, 102
Spring Data Neo4j support, 113

Trigger interface, 191

U
UPDATE identifier (Cypher), 115
updating objects, 72
util namespace, 262

V
value objects, 39, 83
ValueOperations interface, 130, 132
vFabric Gemfire website, 257

W
WAN communications, 267
wc command, 177
web pages, creating, 150, 154

Index | 287

WebApplicationInitializer interface, 159
Webber, Jim, 158
webhdfs scheme, 183, 184
wget command, 177
WHERE identifier (Cypher), 114
wordcount application (Hadoop)

about, 175
introductory example, 177–183
Spring Batch and, 240–242
Spring for Apache Hadoop example, 183–

187
WordCount class

introductory example, 180–183
Spring for Apache Hadoop example, 183

workflows
about, 238
executing Hive scripts, 242
executing Pig scripts, 243
Spring Batch support, 238–240
wordcount application and, 240–242

WorkManager interface, 192
WriteConcern class, 82

X
XA transaction managers, 122
XML namespace elements

activating JPA repositories through, 47
activating repository mechanisms, 96
base-package attribute, 14, 93
db-factory-ref attribute, 90
repository support, 22
setting up MongoDB infrastructure, 81–82
Spring Data Neo4j project, 105

Z
ZSetOperations interface, 130

288 | Index

About the Authors
Dr. Mark Pollack worked on big data solutions in high-energy physics at Brookhaven
National Laboratory and then moved to the financial services industry as a technical
lead or architect for front-office trading systems. Always interested in best practices
and improving the software development process, Mark has been a core Spring (Java)
developer since 2003 and founded its Microsoft counterpart, Spring.NET, in 2004.
Mark now leads the Spring Data project that aims to simplify application development
with new data technologies around big data and NoSQL databases.

Oliver Gierke is an engineer at SpringSource, a division of VMware, and project lead
of the Spring Data JPA, MongoDB, and core module. He has been involved in devel-
oping enterprise applications and open source projects for over six years. His working
focus is centered on software architecture, Spring, and persistence technologies. He
speaks regularly at German and international conferences and is the author of several
technology articles.

Thomas Risberg is currently a member of the Spring Data team, focusing on the
MongoDB and JDBC Extensions projects. He is also a committer on the Spring Frame-
work project, primarily contributing to enhancements of the JDBC framework portion.
Thomas works on the VMware’s Cloud Foundry team, developing integration for the
various frameworks and languages supported by the Cloud Foundry project. He is
coauthor of Professional Java Development with the Spring Framework, together with
Rod Johnson, Juergen Hoeller, Alef Arendsen, and Colin Sampaleanu, published by
Wiley in 2005.

Jon Brisbin is a member of the SpringSource Spring Data team and focuses on pro-
viding developers with useful libraries to facilitate next-generation data manipulation.
He’s helped bring elements of the Grails GORM object mapper to Java-based
MongoDB applications, and has provided key integration components between the
Riak datastore and the RabbitMQ message broker. In addition, he blogs and speaks on
evented application models, and is working diligently to bridge the gap between the
bleeding-edge nonblocking and traditional JVM-based applications.

Michael Hunger has been passionate about software development for a long time. He
is particularly interested in the people who develop software, software craftsmanship,
programming languages, and improving code. For the last two years, he has been
working with Neo Technology on the Neo4j graph database. As the project lead of
Spring Data Neo4j, he helped develop the idea for a convenient and complete solution
for object graph mapping. He also takes care of Neo4j cloud-hosting efforts. As a de-
veloper, Michael loves working with many aspects of programming languages, learning
new things every day, participating in exciting and ambitious open source projects, and
contributing to different programming-related books. Michael is also an active editor
and interviewer at InfoQ.

Colophon
The animal on the cover of Spring Data is the giant squirrel (genus Ratufa), which is
the largest squirrel in the world. These squirrels are found throughout tropical Asiatic
forests and have a conspicuous two-toned color scheme with a distinctive white spot
between the ears. Adult head and body length varies around 14 inches and the tail
length is approximately 2 feet. Their ears are round and they have pronounced paws
used for gripping.

A healthy adult weighs in at around four and a half pounds. With their tan, rust, brown,
or beige coloring, they are possibly the most colorful of the 280 squirrel species. They
are herbivorous, surviving on flowers, fruits, eggs, insects, and even bark.

The giant squirrel is an upper-canopy dwelling species, which rarely leaves the trees,
and requires high branches for the construction of nests. It travels from tree to tree with
jumps of up to 20 feet. When in danger, the giant squirrel often freezes or flattens itself
against the tree trunk, instead of fleeing. Its main predators are birds of prey and leop-
ards. The giant squirrel is mostly active in the early hours of the morning and in the
evening, resting in the midday. It is a shy, wary animal and not easy to discover.

The cover image is from Shaw’s Zoology. The cover font is Adobe ITC Garamond. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Preface
	Overview of the New Data Access Landscape
	How to Read This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Background
	Chapter 1. The Spring Data Project
	NoSQL Data Access for Spring Developers
	General Themes
	The Domain
	The Sample Code
	Importing the Source Code into Your IDE
	STS/Eclipse
	IntelliJ IDEA

	Chapter 2. Repositories: Convenient Data Access Layers
	Quick Start
	Defining Query Methods
	Query Lookup Strategies
	Query Derivation
	Property expressions

	Pagination and Sorting

	Defining Repositories
	Fine-Tuning Repository Interfaces
	Manually Implementing Repository Methods

	IDE Integration
	IntelliJ IDEA

	Chapter 3. Type-Safe Querying Using Querydsl
	Introduction to Querydsl
	Generating the Query Metamodel
	Build System Integration
	Supported Annotation Processors
	Querying Stores Using Querydsl

	Integration with Spring Data Repositories
	Executing Predicates
	Manually Implementing Repositories

	Part II. Relational Databases
	Chapter 4. JPA Repositories
	The Sample Project
	The Traditional Approach
	Bootstrapping the Sample Code
	Using Spring Data Repositories
	Transactionality
	Repository Querydsl Integration

	Chapter 5. Type-Safe JDBC Programming with Querydsl
 SQL
	The Sample Project and Setup
	The HyperSQL Database
	The SQL Module of Querydsl
	Build System Integration
	The Database Schema
	The Domain Implementation of the Sample Project

	The QueryDslJdbcTemplate
	Executing Queries
	The Beginning of the Repository Implementation
	Querying for a Single Object
	The OneToManyResultSetExtractor Abstract Class
	The CustomerListExtractor Implementation
	The Implementations for the RowMappers
	Querying for a List of Objects

	Insert, Update, and Delete Operations
	Inserting with the SQLInsertClause
	Updating with the SQLUpdateClause
	Deleting Rows with the SQLDeleteClause

	Part III. NoSQL
	Chapter 6. MongoDB: A Document Store
	MongoDB in a Nutshell
	Setting Up MongoDB
	Using the MongoDB Shell
	The MongoDB Java Driver

	Setting Up the Infrastructure Using the Spring Namespace
	The Mapping Subsystem
	The Domain Model
	Addresses and email addresses
	Customers
	Products
	Orders and line items

	Setting Up the Mapping Infrastructure
	Using the Spring namespace
	In Spring JavaConfig

	Indexing
	Customizing Conversion
	Implementing custom converters
	Registering custom converters

	MongoTemplate
	Mongo Repositories
	Infrastructure Setup
	Repositories in Detail
	Mongo Querydsl Integration

	Chapter 7. Neo4j: A Graph Database
	Graph Databases
	Neo4j
	Spring Data Neo4j Overview
	Modeling the Domain as a Graph
	Persisting Domain Objects with Spring Data Neo4j
	Neo4jTemplate

	Combining Graph and Repository Power
	Basic Graph Repository Operations
	Derived and Annotated Finder Methods
	Annotated finder methods
	Result handling
	Derived finder methods

	Advanced Graph Use Cases in the Example Domain
	Multiple Roles for a Single Node
	Product Categories and Tags as Examples for In-Graph Indexes
	Leverage Similar Interests (Collaborative Filtering)
	Recommendations

	Transactions, Entity Life Cycle, and Fetch Strategies
	Advanced Mapping Mode
	Working with Neo4j Server
	Continuing From Here

	Chapter 8. Redis: A Key/Value Store
	Redis in a Nutshell
	Setting Up Redis
	Using the Redis Shell

	Connecting to Redis
	Object Conversion
	Object Mapping
	Atomic Counters
	Pub/Sub Functionality
	Listening and Responding to Messages

	Using Spring’s Cache Abstraction with Redis

	Part IV. Rapid Application Development
	Chapter 9. Persistence Layers with Spring Roo
	A Brief Introduction to Roo
	Roo’s Persistence Layers
	Quick Start
	Using Roo from the Command Line
	Using Roo with Spring Tool Suite

	A Spring Roo JPA Repository Example
	Creating the Project
	Setting Up JPA Persistence
	Creating the Entities
	Defining the Repositories
	Creating the Web Layer
	Running the Example

	A Spring Roo MongoDB Repository Example
	Creating the Project
	Setting Up MongoDB Persistence
	Creating the Entities
	Defining the Repositories
	Creating the Web Layer
	Running the Example

	Chapter 10. REST Repository Exporter
	The Sample Project
	Interacting with the REST Exporter
	Accessing Products
	Accessing Customers
	Accessing Orders

	Part V. Big Data
	Chapter 11. Spring for Apache Hadoop
	Challenges Developing with Hadoop
	Hello World
	Hello World Revealed
	Hello World Using Spring for Apache Hadoop
	Scripting HDFS on the JVM
	Combining HDFS Scripting and Job Submission
	Job Scheduling
	Scheduling MapReduce Jobs with a TaskScheduler
	Scheduling MapReduce Jobs with Quartz

	Chapter 12. Analyzing Data with Hadoop
	Using Hive
	Hello World
	Running a Hive Server
	Using the Hive Thrift Client
	Using the Hive JDBC Client
	Apache Logfile Analysis Using Hive

	Using Pig
	Hello World
	Running a PigServer
	Controlling Runtime Script Execution
	Calling Pig Scripts Inside Spring Integration Data Pipelines
	Apache Logfile Analysis Using Pig

	Using HBase
	Hello World
	Using the HBase Java Client

	Chapter 13. Integrating Big Data Pipelines with Spring Batch and Spring
 Integration
	Collecting and Loading Data into HDFS
	An Introduction to Spring Integration
	Copying Logfiles
	Event Streams
	Event Forwarding
	Management
	An Introduction to Spring Batch
	Processing and Loading Data from a Database

	Hadoop Workflows
	Spring Batch Support for Hadoop
	Wordcount as a Spring Batch Application
	Hive and Pig Steps

	Exporting Data from HDFS
	From HDFS to JDBC
	From HDFS to MongoDB

	Collecting and Loading Data into Splunk

	Part VI. Data Grids
	Chapter 14. GemFire: A Distributed Data Grid
	GemFire in a Nutshell
	Caches and Regions
	How to Get GemFire
	Configuring GemFire with the Spring XML Namespace
	Cache Configuration
	Region Configuration
	Cache Client Configuration
	Cache Server Configuration
	WAN Configuration
	Disk Store Configuration

	Data Access with GemfireTemplate
	Repository Usage
	POJO Mapping
	Creating a Repository
	PDX Serialization

	Continuous Query Support

	Bibliography
	Index

